Proof: Variance of the linear combination of two random variables
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Variance ▷
Variance of linear combination
Metadata: ID: P129 | shortcut: var-lincomb | author: JoramSoch | date: 2020-07-07, 06:21.
Theorem: The variance of the linear combination of two random variables is a function of the variances as well as the covariance of those random variables:
\[\label{eq:var-lincomb} \mathrm{Var}(aX+bY) = a^2 \, \mathrm{Var}(X) + b^2 \, \mathrm{Var}(Y) + 2ab \, \mathrm{Cov}(X,Y) \; .\]Proof: The variance is defined in terms of the expected value as
\[\label{eq:var} \mathrm{Var}(X) = \mathrm{E}\left[ (X-\mathrm{E}(X))^2 \right] \; .\]Using this and the linearity of the expected value, we can derive \eqref{eq:var-lincomb} as follows:
\[\label{eq:var-lincomb-qed} \begin{split} \mathrm{Var}(aX+bY) &\overset{\eqref{eq:var}}{=} \mathrm{E}\left[ ((aX+bY)-\mathrm{E}(aX+bY))^2 \right] \\ &= \mathrm{E}\left[ (a [X-\mathrm{E}(X)] + b [Y-\mathrm{E}(Y)])^2 \right] \\ &= \mathrm{E}\left[ a^2 \, (X-\mathrm{E}(X))^2 + b^2 \, (Y-\mathrm{E}(Y))^2 + 2ab \, (X-\mathrm{E}(X)) (Y-\mathrm{E}(Y)) \right] \\ &= \mathrm{E}\left[ a^2 \, (X-\mathrm{E}(X))^2 \right] + \mathrm{E}\left[ b^2 \, (Y-\mathrm{E}(Y))^2 \right] + \mathrm{E}\left[ 2ab \, (X-\mathrm{E}(X)) (Y-\mathrm{E}(Y)) \right] \\ &\overset{\eqref{eq:var}}{=} a^2 \, \mathrm{Var}(X) + b^2 \, \mathrm{Var}(Y) + 2ab \, \mathrm{Cov}(X,Y) \; . \\ \end{split}\]∎
Sources: - Wikipedia (2020): "Variance"; in: Wikipedia, the free encyclopedia, retrieved on 2020-07-07; URL: https://en.wikipedia.org/wiki/Variance#Basic_properties.
Metadata: ID: P129 | shortcut: var-lincomb | author: JoramSoch | date: 2020-07-07, 06:21.