Proof: Linearity of the expected value
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Expected value ▷
Linearity
Metadata: ID: P53 | shortcut: mean-lin | author: JoramSoch | date: 2020-02-13, 21:08.
Theorem: The expected value is a linear operator, i.e.
\[\label{eq:mean-lin} \begin{split} \mathrm{E}(X + Y) &= \mathrm{E}(X) + \mathrm{E}(Y) \\ \mathrm{E}(a\,X) &= a\,\mathrm{E}(X) \end{split}\]for random variables $X$ and $Y$ and a constant $a$.
Proof:
1) If $X$ and $Y$ are discrete random variables, the expected value is
\[\label{eq:mean-disc} \mathrm{E}(X) = \sum_{x \in \mathcal{X}} x \cdot f_X(x)\]and the law of marginal probability states that
\[\label{eq:lmp-disc} p(x) = \sum_{y \in \mathcal{Y}} p(x,y) \; .\]Applying this, we have
\[\label{eq:mean-lin-s1-disc} \begin{split} \mathrm{E}(X + Y) &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} (x+y) \cdot f_{X,Y}(x,y) \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} x \cdot f_{X,Y}(x,y) + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} y \cdot f_{X,Y}(x,y) \\ &= \sum_{x \in \mathcal{X}} x \sum_{y \in \mathcal{Y}} f_{X,Y}(x,y) + \sum_{y \in \mathcal{Y}} y \sum_{x \in \mathcal{X}} f_{X,Y}(x,y) \\ &\overset{\eqref{eq:lmp-disc}}{=} \sum_{x \in \mathcal{X}} x \cdot f_X(x) + \sum_{y \in \mathcal{Y}} y \cdot f_{Y}(y) \\ &\overset{\eqref{eq:mean-disc}}{=} \mathrm{E}(X) + \mathrm{E}(Y) \end{split}\]as well as
\[\label{eq:mean-lin-s2-disc} \begin{split} \mathrm{E}(a\,X) &= \sum_{x \in \mathcal{X}} a \, x \cdot f_X(x) \\ &= a \, \sum_{x \in \mathcal{X}} x \cdot f_X(x) \\ &\overset{\eqref{eq:mean-disc}}{=} a \, \mathrm{E}(X) \; . \end{split}\]
2) If $X$ and $Y$ are continuous random variables, the expected value is
and the law of marginal probability states that
\[\label{eq:lmp-cont} p(x) = \int_{\mathcal{Y}} p(x,y) \, \mathrm{d}y \; .\]Applying this, we have
\[\label{eq:mean-lin-s1-cont} \begin{split} \mathrm{E}(X + Y) &= \int_{\mathcal{X}} \int_{\mathcal{Y}} (x+y) \cdot f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x \\ &= \int_{\mathcal{X}} \int_{\mathcal{Y}} x \cdot f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x + \int_{\mathcal{X}} \int_{\mathcal{Y}} y \cdot f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x \\ &= \int_{\mathcal{X}} x \int_{\mathcal{Y}} f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x + \int_{\mathcal{Y}} y \int_{\mathcal{X}} f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y \\ &\overset{\eqref{eq:lmp-cont}}{=} \int_{\mathcal{X}} x \cdot f_X(x) \, \mathrm{d}x + \int_{\mathcal{Y}} y \cdot f_Y(y) \, \mathrm{d}y \\ &\overset{\eqref{eq:mean-cont}}{=} \mathrm{E}(X) + \mathrm{E}(Y) \end{split}\]as well as
\[\label{eq:mean-lin-s2-cont} \begin{split} \mathrm{E}(a\,X) &= \int_{\mathcal{X}} a \, x \cdot f_X(x) \, \mathrm{d}x \\ &= a \int_{\mathcal{X}} x \cdot f_X(x) \, \mathrm{d}x \\ &\overset{\eqref{eq:mean-cont}}{=} a \, \mathrm{E}(X) \; . \end{split}\]
Collectively, this shows that both requirements for linearity are fulfilled for the expected value, for discrete as well as for continuous random variables.
∎
Sources: - Wikipedia (2020): "Expected value"; in: Wikipedia, the free encyclopedia, retrieved on 2020-02-13; URL: https://en.wikipedia.org/wiki/Expected_value#Basic_properties.
- Michael B, Kuldeep Guha Mazumder, Geoff Pilling et al. (2020): "Linearity of Expectation"; in: brilliant.org, retrieved on 2020-02-13; URL: https://brilliant.org/wiki/linearity-of-expectation/.
Metadata: ID: P53 | shortcut: mean-lin | author: JoramSoch | date: 2020-02-13, 21:08.