Proof: Linearity of the expected value
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Expected value ▷
Linearity
Metadata: ID: P53 | shortcut: mean-lin | author: JoramSoch | date: 2020-02-13, 21:08.
Theorem: The expected value is a linear operator, i.e.
\[\label{eq:mean-lin} \begin{split} \mathrm{E}(X + Y) &= \mathrm{E}(X) + \mathrm{E}(Y) \\ \mathrm{E}(a\,X) &= a\,\mathrm{E}(X) \end{split}\]for random variables $X$ and $Y$ and a constant $a$.
Proof:
1) If $X$ and $Y$ are discrete random variables, the expected value is
\[\label{eq:mean-disc} \mathrm{E}(X) = \sum_{x \in \mathcal{X}} x \cdot f_X(x)\]and the law of marginal probability states that
\[\label{eq:lmp-disc} p(x) = \sum_{y \in \mathcal{Y}} p(x,y) \; .\]Applying this, we have
\[\label{eq:mean-lin-s1-disc} \begin{split} \mathrm{E}(X + Y) &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} (x+y) \cdot f_{X,Y}(x,y) \\ &= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} x \cdot f_{X,Y}(x,y) + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} y \cdot f_{X,Y}(x,y) \\ &= \sum_{x \in \mathcal{X}} x \sum_{y \in \mathcal{Y}} f_{X,Y}(x,y) + \sum_{y \in \mathcal{Y}} y \sum_{x \in \mathcal{X}} f_{X,Y}(x,y) \\ &\overset{\eqref{eq:lmp-disc}}{=} \sum_{x \in \mathcal{X}} x \cdot f_X(x) + \sum_{y \in \mathcal{Y}} y \cdot f_{Y}(y) \\ &\overset{\eqref{eq:mean-disc}}{=} \mathrm{E}(X) + \mathrm{E}(Y) \end{split}\]as well as
\[\label{eq:mean-lin-s2-disc} \begin{split} \mathrm{E}(a\,X) &= \sum_{x \in \mathcal{X}} a \, x \cdot f_X(x) \\ &= a \, \sum_{x \in \mathcal{X}} x \cdot f_X(x) \\ &\overset{\eqref{eq:mean-disc}}{=} a \, \mathrm{E}(X) \; . \end{split}\]
2) If $X$ and $Y$ are continuous random variables, the expected value is
and the law of marginal probability states that
\[\label{eq:lmp-cont} p(x) = \int_{\mathcal{Y}} p(x,y) \, \mathrm{d}y \; .\]Applying this, we have
\[\label{eq:mean-lin-s1-cont} \begin{split} \mathrm{E}(X + Y) &= \int_{\mathcal{X}} \int_{\mathcal{Y}} (x+y) \cdot f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x \\ &= \int_{\mathcal{X}} \int_{\mathcal{Y}} x \cdot f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x + \int_{\mathcal{X}} \int_{\mathcal{Y}} y \cdot f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x \\ &= \int_{\mathcal{X}} x \int_{\mathcal{Y}} f_{X,Y}(x,y) \, \mathrm{d}y \, \mathrm{d}x + \int_{\mathcal{Y}} y \int_{\mathcal{X}} f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y \\ &\overset{\eqref{eq:lmp-cont}}{=} \int_{\mathcal{X}} x \cdot f_X(x) \, \mathrm{d}x + \int_{\mathcal{Y}} y \cdot f_Y(y) \, \mathrm{d}y \\ &\overset{\eqref{eq:mean-cont}}{=} \mathrm{E}(X) + \mathrm{E}(Y) \end{split}\]as well as
\[\label{eq:mean-lin-s2-cont} \begin{split} \mathrm{E}(a\,X) &= \int_{\mathcal{X}} a \, x \cdot f_X(x) \, \mathrm{d}x \\ &= a \int_{\mathcal{X}} x \cdot f_X(x) \, \mathrm{d}x \\ &\overset{\eqref{eq:mean-cont}}{=} a \, \mathrm{E}(X) \; . \end{split}\]
Collectively, this shows that both requirements for linearity are fulfilled for the expected value, for discrete as well as for continuous random variables. The present derivation also holds for the expected value of random vectors as well as for the expected value of random matrices.
∎
Sources: - Wikipedia (2020): "Expected value"; in: Wikipedia, the free encyclopedia, retrieved on 2020-02-13; URL: https://en.wikipedia.org/wiki/Expected_value#Basic_properties.
- Michael B, Kuldeep Guha Mazumder, Geoff Pilling et al. (2020): "Linearity of Expectation"; in: brilliant.org, retrieved on 2020-02-13; URL: https://brilliant.org/wiki/linearity-of-expectation/.
Metadata: ID: P53 | shortcut: mean-lin | author: JoramSoch | date: 2020-02-13, 21:08.