Definition: Expected value
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Expected value ▷
Definition
Sources:
Metadata: ID: D11 | shortcut: mean | author: JoramSoch | date: 2020-02-13, 19:38.
Definition:
1) The expected value (or, mean) of a discrete random variable $X$ with domain $\mathcal{X}$ is
\[\label{eq:mean-disc} \mathrm{E}(X) = \sum_{x \in \mathcal{X}} x \cdot f_X(x)\]where $f_X(x)$ is the probability mass function of $X$.
2) The expected value (or, mean) of a continuous random variable $X$ with domain $\mathcal{X}$ is
where $f_X(x)$ is the probability density function of $X$.
- Wikipedia (2020): "Expected value"; in: Wikipedia, the free encyclopedia, retrieved on 2020-02-13; URL: https://en.wikipedia.org/wiki/Expected_value#Definition.
Metadata: ID: D11 | shortcut: mean | author: JoramSoch | date: 2020-02-13, 19:38.