Index: The Book of Statistical ProofsGeneral TheoremsProbability theoryCovariance ▷ Cross-covariance matrix and expected values

Theorem: Let $X$ and $Y$ be a random vectors. Then, the cross-covariance matrix of $X$ and $Y$ is equal to the mean of the outer product of $X$ with $Y$ minus the outer product of the means of $X$ and $Y$:

\[\label{eq:covmatcross-mean} \Sigma_{XY} = \mathrm{E}(X Y^\mathrm{T}) - \mathrm{E}(X) \mathrm{E}(Y)^\mathrm{T} \; .\]

Proof: The cross-covariance matrix of $X$ and $Y$ is defined as

\[\label{eq:covmat-cross1} \Sigma_{XY} = \begin{bmatrix} \mathrm{E}\left[ (X_1-\mathrm{E}[X_1]) (Y_1-\mathrm{E}[Y_1]) \right] & \ldots & \mathrm{E}\left[ (X_1-\mathrm{E}[X_1]) (Y_m-\mathrm{E}[Y_m]) \right] \\ \vdots & \ddots & \vdots \\ \mathrm{E}\left[ (X_n-\mathrm{E}[X_n]) (Y_1-\mathrm{E}[Y_1]) \right] & \ldots & \mathrm{E}\left[ (X_n-\mathrm{E}[X_n]) (Y_m-\mathrm{E}[Y_m]) \right] \end{bmatrix}\]

which can also be expressed using matrix multiplication as

\[\label{eq:covmat-cross2} \Sigma_{XY} = \mathrm{E}\left[ (X-\mathrm{E}[X]) (Y-\mathrm{E}[Y])^\mathrm{T} \right] \; .\]

Due to the linearity of the expected value, this can be rewritten as

\[\label{eq:covmatcross-mean-qed} \begin{split} \Sigma_{XY} &= \mathrm{E}\left[ (X-\mathrm{E}[X]) (Y-\mathrm{E}[Y])^\mathrm{T} \right] \\ &= \mathrm{E}\left[ X Y^\mathrm{T} - X \, \mathrm{E}(Y)^\mathrm{T} - \mathrm{E}(X) \, Y^\mathrm{T} + \mathrm{E}(X) \mathrm{E}(Y)^\mathrm{T} \right] \\ &= \mathrm{E}(X Y^\mathrm{T}) - \mathrm{E}(X) \mathrm{E}(Y)^\mathrm{T} - \mathrm{E}(X) \mathrm{E}(Y)^\mathrm{T} + \mathrm{E}(X) \mathrm{E}(Y)^\mathrm{T} \\ &= \mathrm{E}(X Y^\mathrm{T}) - \mathrm{E}(X) \mathrm{E}(Y)^\mathrm{T} \; . \end{split}\]
Sources:

Metadata: ID: P512 | shortcut: covmatcross-mean | author: JoramSoch | date: 2025-08-29, 13:44.