Proof: Positive semi-definiteness of the covariance matrix
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Covariance ▷
Positive semi-definiteness
Metadata: ID: P351 | shortcut: covmat-psd | author: JoramSoch | date: 2022-09-26, 11:26.
Theorem: Each covariance matrix is positive semi-definite:
\[\label{eq:covmat-symm} a^\mathrm{T} \Sigma_{XX} a \geq 0 \quad \text{for all} \quad a \in \mathbb{R}^n \; .\]Proof: The covariance matrix of $X$ can be expressed in terms of expected values as follows
\[\label{eq:covmat} \Sigma_{XX} = \Sigma(X) = \mathrm{E}\left[ (X-\mathrm{E}[X]) (X-\mathrm{E}[X])^\mathrm{T} \right]\]A positive semi-definite matrix is a matrix whose eigenvalues are all non-negative or, equivalently,
\[\label{eq:psd} M \; \text{pos. semi-def.} \quad \Leftrightarrow \quad x^\mathrm{T} M x \geq 0 \quad \text{for all} \quad x \in \mathbb{R}^n \; .\]Here, for an arbitrary real column vector $a \in \mathbb{R}^n$, we have:
\[\label{eq:covmat-symm-s1} a^\mathrm{T} \Sigma_{XX} a \overset{\eqref{eq:covmat}}{=} a^\mathrm{T} \mathrm{E}\left[ (X-\mathrm{E}[X]) (X-\mathrm{E}[X])^\mathrm{T} \right] a \; .\]Because the expected value is a linear operator, we can write:
\[\label{eq:covmat-symm-s2} a^\mathrm{T} \Sigma_{XX} a = \mathrm{E}\left[ a^\mathrm{T} (X-\mathrm{E}[X]) (X-\mathrm{E}[X])^\mathrm{T} a \right] \; .\]Now define the scalar random variable
\[\label{eq:Y-X} Y = a^\mathrm{T} (X-\mu_X) \; .\]where $\mu_X = \mathrm{E}[X]$ and note that
\[\label{eq:YT-Y} a^\mathrm{T} (X-\mu_X) = (X-\mu_X)^\mathrm{T} a \; .\]Thus, combing \eqref{eq:covmat-symm-s2} with \eqref{eq:Y-X}, we have:
\[\label{eq:covmat-symm-s3} a^\mathrm{T} \Sigma_{XX} a = \mathrm{E}\left[ Y^2 \right] \; .\]Because $Y^2$ is a random variable that cannot become negative and the expected value of a strictly non-negative random variable is also non-negative, we finally have
\[\label{eq:covmat-symm-s4} a^\mathrm{T} \Sigma_{XX} a \geq 0\]for any $a \in \mathbb{R}^n$.
∎
Sources: - hkBattousai (2013): "What is the proof that covariance matrices are always semi-definite?"; in: StackExchange Mathematics, retrieved on 2022-09-26; URL: https://math.stackexchange.com/a/327872.
- Wikipedia (2022): "Covariance matrix"; in: Wikipedia, the free encyclopedia, retrieved on 2022-09-26; URL: https://en.wikipedia.org/wiki/Covariance_matrix#Basic_properties.
Metadata: ID: P351 | shortcut: covmat-psd | author: JoramSoch | date: 2022-09-26, 11:26.