Index: The Book of Statistical ProofsProbability DistributionsMultivariate continuous distributionsBivariate normal distribution ▷ Mutual information

Theorem: Let $X$ and $Y$ follow a bivariate normal distribution:

\[\label{eq:bvn} \left[ \begin{matrix} X \\ Y \end{matrix} \right] \sim \mathcal{N}\left( \left[ \begin{matrix} \mu_1 \\ \mu_2 \end{matrix} \right], \left[ \begin{matrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{matrix} \right] \right) \; .\]

Then, the mutual information of $X$ and $Y$ is

\[\label{eq:bvn-lincomb} \mathrm{I}(X,Y) = -\frac{1}{2} \ln \left( 1-\rho^2 \right)\]

where $\rho$ is the correlation of $X$ and $Y$.

Proof: Mutual information can be written in terms of marginal and joint differential entropy:

\[\label{eq:cmi-mjde} \mathrm{I}(X,Y) = \mathrm{h}(X) + \mathrm{h}(Y) - \mathrm{h}(X,Y) \; .\]

The marginal distributions of the multivariate normal distribution are also multivariate normal

\[\label{eq:mvn-marg} \left[ \begin{matrix} X_1 \\ X_2 \end{matrix} \right] \sim \mathcal{N}\left( \left[ \begin{matrix} \mu_1 \\ \mu_2 \end{matrix} \right], \left[ \begin{matrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{matrix} \right] \right) \quad \Rightarrow \quad X_1 \sim \mathcal{N}\left( \mu_1, \Sigma_{11} \right) \; ,\]

such that the marginals of the bivariate normal distribution are univariate normal distribution:

\[\label{eq:bvn-marg} \left[ \begin{matrix} X \\ Y \end{matrix} \right] \sim \mathcal{N}\left( \left[ \begin{matrix} \mu_1 \\ \mu_2 \end{matrix} \right], \left[ \begin{matrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{matrix} \right] \right) \quad \Rightarrow \quad X \sim \mathcal{N}\left( \mu_1, \sigma_1^2 \right) \quad \text{and} \quad Y \sim \mathcal{N}\left( \mu_2, \sigma_2^2 \right) \; .\]

The differential entropy of the univariate normal distribution is

\[\label{eq:norm-dent} \mathrm{h}(X) = \frac{1}{2} \ln\left( 2 \pi \sigma^2 e \right)\]

and the differential entropy of the multivariate normal distribution is

\[\label{eq:mvn-dent} \mathrm{h}(x) = \frac{n}{2} \ln(2\pi) + \frac{1}{2} \ln|\Sigma| + \frac{1}{2} n\]

where $\lvert \Sigma \rvert$ is the determinant of the covariance matrix $\Sigma$. A two-dimensional covariance matrix can be rewritten in terms of correlations as follows:

\[\label{eq:Sigma} \begin{split} \Sigma &= \left[ \begin{matrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{matrix} \right] \left[ \begin{matrix} 1 & \rho \\ \rho & 1 \end{matrix} \right] \left[ \begin{matrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{matrix} \right] \\ &= \left[ \begin{matrix} \sigma_1^2 & \rho \, \sigma_1 \sigma_2 \\ \rho \, \sigma_1 \sigma_2 & \sigma_2^2 \end{matrix} \right] \; . \end{split}\]

Combining \eqref{eq:cmi-mjde} with \eqref{eq:norm-dent} and \eqref{eq:mvn-dent}, applying $n = 2$, we get:

\[\label{eq:bvn-mi} \begin{split} \mathrm{I}(X,Y) &\overset{\eqref{eq:cmi-mjde}}{=} \mathrm{h}(X) + \mathrm{h}(Y) - \mathrm{h}(X,Y) \\ &\overset{\eqref{eq:bvn-marg}}{=} \mathrm{h}\left[ \mathcal{N}\left( \mu_1, \sigma_1^2 \right) \right] + \mathrm{h}\left[ \mathcal{N}\left( \mu_2, \sigma_2^2 \right) \right] - \mathrm{h}\left[ \mathcal{N}\left( \mu, \Sigma \right) \right] \\ &\overset{\eqref{eq:Sigma}}{=} \left[ \frac{1}{2} \ln\left( 2 \pi \sigma_1^2 e \right) \right] + \left[ \frac{1}{2} \ln\left( 2 \pi \sigma_2^2 e \right) \right] - \left[ \frac{2}{2} \ln(2\pi) + \frac{1}{2} \ln \left| \left[ \begin{matrix} \sigma_1^2 & \rho \, \sigma_1 \sigma_2 \\ \rho \, \sigma_1 \sigma_2 & \sigma_2^2 \end{matrix} \right] \right| + \frac{1}{2} \cdot 2 \right] \\ &= \left( \frac{2}{2} \ln(2\pi) + \frac{2}{2} \ln(e) - \ln(2\pi) - 1 \right) + \left( \frac{1}{2} \ln\left( \sigma_1^2 \right) + \frac{1}{2} \ln\left( \sigma_2^2 \right) - \frac{1}{2} \ln \left| \left[ \begin{matrix} \sigma_1^2 & \rho \, \sigma_1 \sigma_2 \\ \rho \, \sigma_1 \sigma_2 & \sigma_2^2 \end{matrix} \right] \right| \right) \\ &= \frac{1}{2} \left[ \ln\left( \sigma_1^2 \right) + \ln\left( \sigma_2^2 \right) - \ln\left( \sigma_1^2 \sigma_2^2 - (\rho \, \sigma_1 \sigma_2)^2 \right) \right] \\ &= \frac{1}{2} \ln \left[ \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 \sigma_2^2 - (\rho \, \sigma_1 \sigma_2)^2} \right] \\ &= \frac{1}{2} \ln \left[ \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 \sigma_2^2 (1-\rho^2)} \right] \\ &= \frac{1}{2} \ln \left[ \frac{1}{1-\rho^2} \right] \\ &= -\frac{1}{2} \ln \left( 1-\rho^2 \right) \; . \end{split}\]
Sources:

Metadata: ID: P476 | shortcut: bvn-mi | author: JoramSoch | date: 2024-11-01, 11:51.