Proof: Marginal distributions of the multivariate normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Multivariate continuous distributions ▷
Multivariate normal distribution ▷
Marginal distributions
Metadata: ID: P35 | shortcut: mvn-marg | author: JoramSoch | date: 2020-01-29, 15:12.
Theorem: Let $x$ follow a multivariate normal distribution:
\[\label{eq:mvn} x \sim \mathcal{N}(\mu, \Sigma) \; .\]Then, the marginal distribution of any subset vector $x_s$ is also a multivariate normal distribution
\[\label{eq:mvn-marg} x_s \sim \mathcal{N}(\mu_s, \Sigma_s)\]where $\mu_s$ drops the irrelevant variables (the ones not in the subset, i.e. marginalized out) from the mean vector $\mu$ and $\Sigma_s$ drops the corresponding rows and columns from the covariance matrix $\Sigma$.
Proof: Define an $m \times n$ subset matrix $S$ such that $s_{ij} = 1$, if the $j$-th element in $x_s$ corresponds to the $i$-th element in $x$, and $s_{ij} = 0$ otherwise. Then,
\[\label{eq:xs} x_s = S x\]and we can apply the linear transformation theorem to give
\[\label{eq:mvn-marg-qed} x_s \sim \mathcal{N}(S \mu, S \Sigma S^\mathrm{T}) \; .\]Finally, we see that $S \mu = \mu_s$ and $S \Sigma S^\mathrm{T} = \Sigma_s$.
∎
Sources: Metadata: ID: P35 | shortcut: mvn-marg | author: JoramSoch | date: 2020-01-29, 15:12.