Index: The Book of Statistical ProofsProbability Distributions ▷ Multivariate continuous distributions ▷ Multivariate normal distribution ▷ Differential entropy

Theorem: Let $x$ follow a multivariate normal distribution

$\label{eq:mvn} x \sim \mathcal{N}(\mu, \Sigma) \; .$

Then, the differential entropy of $x$ in nats is

$\label{eq:mvn-dent} \mathrm{h}(x) = \frac{n}{2} \ln(2\pi) + \frac{1}{2} \ln|\Sigma| + \frac{1}{2} n \; .$

Proof: The differential entropy of a random variable is defined as

$\label{eq:dent} \mathrm{h}(X) = - \int_{\mathcal{X}} p(x) \, \log_b p(x) \, \mathrm{d}x \; .$

To measure $h(X)$ in nats, we set $b = e$, such that

$\label{eq:dent-nats} \mathrm{h}(X) = - \mathrm{E}\left[ \ln p(x) \right] \; .$

With the probability density function of the multivariate normal distribution, the differential entropy of $x$ is:

$\label{eq:mvn-dent-s1} \begin{split} \mathrm{h}(x) &= - \mathrm{E}\left[ \ln \left( \frac{1}{\sqrt{(2 \pi)^n |\Sigma|}} \cdot \exp \left[ -\frac{1}{2} (x-\mu)^\mathrm{T} \Sigma^{-1} (x-\mu) \right] \right) \right] \\ &= - \mathrm{E}\left[ - \frac{n}{2} \ln(2\pi) - \frac{1}{2} \ln|\Sigma| - \frac{1}{2} (x-\mu)^\mathrm{T} \Sigma^{-1} (x-\mu) \right] \\ &= \frac{n}{2} \ln(2\pi) + \frac{1}{2} \ln|\Sigma| + \frac{1}{2} \, \mathrm{E}\left[ (x-\mu)^\mathrm{T} \Sigma^{-1} (x-\mu) \right] \; . \end{split}$

The last term can be evaluted as

$\label{eq:mvn-dent-t3} \begin{split} \mathrm{E}\left[ (x-\mu)^\mathrm{T} \Sigma^{-1} (x-\mu) \right] &= \mathrm{E}\left[ \mathrm{tr}\left( (x-\mu)^\mathrm{T} \Sigma^{-1} (x-\mu) \right) \right] \\ &= \mathrm{E}\left[ \mathrm{tr}\left( \Sigma^{-1} (x-\mu) (x-\mu)^\mathrm{T} \right) \right] \\ &= \mathrm{tr}\left( \Sigma^{-1} \mathrm{E}\left[ (x-\mu) (x-\mu)^\mathrm{T} \right] \right) \\ &= \mathrm{tr}\left( \Sigma^{-1} \Sigma \right) \\ &= \mathrm{tr}\left( I_n \right) \\ &= n \; , \\ \end{split}$

such that the differential entropy is

$\label{eq:mvn-dent-qed} \mathrm{h}(x) = \frac{n}{2} \ln(2\pi) + \frac{1}{2} \ln|\Sigma| + \frac{1}{2} \, n \; .$
Sources:

Metadata: ID: P100 | shortcut: mvn-dent | author: JoramSoch | date: 2020-05-14, 19:49.