Index: The Book of Statistical ProofsModel SelectionGoodness-of-fit measuresR-squared ▷ Mean/mode/median under null hypothesis

Theorem: Consider a linear regression model with known design matrix $X = \left[ 1_n, \; X_1 \right] \in \mathbb{R}^{n \times p}$, known covariance structure $V$, unknown regression parameters $\beta$ and unknown noise variance $\sigma^2$:

\[\label{eq:mlr} y = X\beta + \varepsilon, \; \varepsilon \sim \mathcal{N}(0, \sigma^2 V) \; .\]

Then, under the null hypothesis that the true coefficient of determination is zero, i.e. $H_0: \; R^2 = 0$, the expected value, the median and the mode of $R^2$ are

\[\label{eq:rsq-mmm} \begin{split} \mathrm{E}(R^2) &= \frac{p-1}{n-1} \\ \mathrm{median}(R^2) &= I^{-1}\left( \frac{1}{2}; \frac{p-1}{2}, \frac{n-p}{2} \right) \\ \mathrm{mode}(R^2) &= \frac{p-3}{n-5} \end{split}\]

where $I^{-1}(p; a, b)$ is the inverse function of the regularized incomplete beta function.

Proof: We know that R-squared follows a beta distribution under $H_0$:

\[\label{eq:rsq-dist} R^2 \sim \mathrm{Bet}\left( \frac{p-1}{2}, \frac{n-p}{2} \right) \; .\]

Using mean, median and mode of the beta distribution

\[\label{eq:beta-mmm} \begin{split} X &\sim \mathrm{Bet}(\alpha, \beta) \\ \Rightarrow \quad \mathrm{E}(X) &= \frac{\alpha}{\alpha+\beta} \\ \mathrm{median}(X) &= I^{-1}\left( 1/2; \alpha, \beta \right) \\ \mathrm{mode}(X) &= \frac{\alpha-1}{\alpha+\beta-2} \; , \end{split}\]

we have:

\[\label{eq:rsq-mmm-qed} \begin{split} \mathrm{E}(R^2) &= \frac{(p-1)/2}{(p-1)/2+(n-p)/2} \\ &= \frac{p-1}{n-1} \\ \mathrm{median}(R^2) &= I^{-1}\left( 1/2; (p-1)/2, (n-p)/2 \right) \\ &= I^{-1}\left( \frac{1}{2}; \frac{p-1}{2}, \frac{n-p}{2} \right) \\ \mathrm{mode}(R^2) &= \frac{(p-1)/2-1}{(p-1)/2+(n-p)/2-2} \\ &= \frac{p-3}{n-5} \; . \end{split}\]

This completes the proof.

Sources:

Metadata: ID: P508 | shortcut: rsq-mmm | author: JoramSoch | date: 2025-07-04, 12:30.