Index: The Book of Statistical ProofsGeneral TheoremsProbability theoryProbability axioms ▷ Range of probability

Theorem: The probability of an event is bounded between 0 and 1:

\[\label{eq:prob-range} 0 \leq P(E) \leq 1 \; .\]

Proof: From the first axiom of probability, we have:

\[\label{eq:pEg0} P(E) \geq 0 \; .\]

By combining the first axiom of probability and the probability of the complement, we obtain:

\[\label{eq:pEl1} \begin{split} 1- P(E) = P(E^\mathrm{c}) &\geq 0 \\ 1- P(E) &\geq 0 \\ P(E) &\leq 1 \; . \end{split}\]

Together, \eqref{eq:pEg0} and \eqref{eq:pEl1} imply that

\[\label{eq:prob-range-qed} 0 \leq P(E) \leq 1 \; .\]
Sources:

Metadata: ID: P246 | shortcut: prob-range | author: JoramSoch | date: 2021-07-30, 12:25.