Proof: Probability of the complement
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Probability axioms ▷
Probability of the complement
Metadata: ID: P245 | shortcut: prob-comp | author: JoramSoch | date: 2021-07-30, 12:14.
Theorem: The probability of a complement of a set is one minus the probability of this set:
\[\label{eq:prob-comp} P(A^\mathrm{c}) = 1 - P(A)\]where $A^\mathrm{c} = \Omega \setminus A$ and $\Omega$ is the sample space.
Proof: Since $A$ and $A^\mathrm{c}$ are mutually exclusive and $A \cup A^\mathrm{c} = \Omega$, the third axiom of probability implies:
\[\label{eq:pAAc} \begin{split} P(A \cup A^\mathrm{c}) &= P(A) + P(A^\mathrm{c}) \\ P(\Omega) &= P(A) + P(A^\mathrm{c}) \\ P(A^\mathrm{c}) &= P(\Omega) - P(A) \; . \end{split}\]The second axiom of probability states that $P(\Omega) =1$, such that we obtain:
\[\label{eq:prob-comp-qed} P(A^\mathrm{c}) = 1 - P(A) \; .\]∎
Sources: - A.N. Kolmogorov (1950): "Elementary Theory of Probability"; in: Foundations of the Theory of Probability, p. 6, eq. 2; URL: https://archive.org/details/foundationsofthe00kolm/page/6/mode/2up.
- Alan Stuart & J. Keith Ord (1994): "Probability and Statistical Inference"; in: Kendall's Advanced Theory of Statistics, Vol. 1: Distribution Theory, ch. 8.6, p. 288, eq. (c); URL: https://www.wiley.com/en-us/Kendall%27s+Advanced+Theory+of+Statistics%2C+3+Volumes%2C+Set%2C+6th+Edition-p-9780470669549.
- Wikipedia (2021): "Probability axioms"; in: Wikipedia, the free encyclopedia, retrieved on 2021-07-30; URL: https://en.wikipedia.org/wiki/Probability_axioms#The_complement_rule.
Metadata: ID: P245 | shortcut: prob-comp | author: JoramSoch | date: 2021-07-30, 12:14.