Index: The Book of Statistical ProofsProbability Distributions ▷ Multivariate continuous distributions ▷ Multivariate normal distribution ▷ Special case of matrix-normal distribution

Theorem: The multivariate normal distribution is a special case of the matrix-normal distribution with number of variables $p = 1$, i.e. random matrix $X = x \in \mathbb{R}^{n \times 1}$, mean $M = \mu \in \mathbb{R}^{n \times 1}$, covariance across rows $U = \Sigma$ and covariance across columns $V = 1$.

Proof: The probability density function of the matrix-normal distribution is

\[\label{eq:matn-pdf} \mathcal{MN}(X; M, U, V) = \frac{1}{\sqrt{(2\pi)^{np} |V|^n |U|^p}} \cdot \exp\left[-\frac{1}{2} \mathrm{tr}\left( V^{-1} (X-M)^\mathrm{T} \, U^{-1} (X-M) \right) \right] \; .\]

Setting $p = 1$, $X = x$, $M = \mu$, $U = \Sigma$ and $V = 1$, we obtain

\[\label{eq:mvn-pdf} \begin{split} \mathcal{MN}(x; \mu, \Sigma, 1) &= \frac{1}{\sqrt{(2\pi)^{n} |1|^n |\Sigma|^1}} \cdot \exp\left[-\frac{1}{2} \mathrm{tr}\left( 1^{-1} (x-\mu)^\mathrm{T} \, \Sigma^{-1} (x-\mu) \right) \right] \\ &= \frac{1}{\sqrt{(2\pi)^{n} |\Sigma|}} \cdot \exp\left[-\frac{1}{2} (x-\mu)^\mathrm{T} \, \Sigma^{-1} (x-\mu) \right] \end{split}\]

which is equivalent to the probability density function of the multivariate normal distribution.

Sources:

Metadata: ID: P330 | shortcut: mvn-matn | author: JoramSoch | date: 2022-07-31, 11:00.