Proof: Probability density function of the matrix-normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Matrix-variate continuous distributions ▷
Matrix-normal distribution ▷
Probability density function
Metadata: ID: P70 | shortcut: matn-pdf | author: JoramSoch | date: 2020-03-02, 21:03.
Theorem: Let $X$ be a random matrix following a matrix-normal distribution:
\[\label{eq:matn} X \sim \mathcal{MN}(M, U, V) \; .\]Then, the probability density function of $X$ is
\[\label{eq:matn-pdf} f(X) = \frac{1}{\sqrt{(2\pi)^{np} |V|^n |U|^p}} \cdot \exp\left[-\frac{1}{2} \mathrm{tr}\left( V^{-1} (X-M)^\mathrm{T} \, U^{-1} (X-M) \right) \right] \; .\]Proof: This follows directly from the definition of the matrix-normal distribution.
∎
Sources: Metadata: ID: P70 | shortcut: matn-pdf | author: JoramSoch | date: 2020-03-02, 21:03.