Proof: Relationship between second raw moment, variance and mean
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Further moments ▷
Second raw moment and variance
Metadata: ID: P172 | shortcut: momraw-2nd | author: JoramSoch | date: 2020-10-08, 05:05.
Theorem: The second raw moment can be expressed as
\[\label{eq:momraw-2nd} \mu_2' = \mathrm{Var}(X) + \mathrm{E}(X)^2\]where $\mathrm{Var}(X)$ is the variance of $X$ and $\mathrm{E}(X)$ is the expected value of $X$.
Proof: The second raw moment of a random variable $X$ is defined as
\[\label{eq:momraw-2nd-def} \mu_2' = \mathrm{E}\left[ (X-0)^2 \right] \; .\]Using the partition of variance into expected values
\[\label{eq:var-mean} \mathrm{Var}(X) = \mathrm{E}(X^2) - \mathrm{E}(X)^2 \; ,\]the second raw moment can be rearranged into:
\[\label{eq:momraw-2nd-qed} \mu_2' \overset{\eqref{eq:momraw-2nd-def}}{=} \mathrm{E}(X^2) \overset{\eqref{eq:var-mean}}{=} \mathrm{Var}(X) + \mathrm{E}(X)^2 \; .\]∎
Sources: Metadata: ID: P172 | shortcut: momraw-2nd | author: JoramSoch | date: 2020-10-08, 05:05.