Proof: Expected value of a non-negative random variable
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Expected value ▷
Non-negative random variable
Metadata: ID: P103 | shortcut: mean-nnrvar | author: JoramSoch | date: 2020-05-18, 23:54.
Theorem: Let $X$ be a non-negative random variable. Then, the expected value of $X$ is
\[\label{eq:mean-cdf} \mathrm{E}(X) = \int_{0}^{\infty} (1 - F_X(x)) \, \mathrm{d}x\]where $F_X(x)$ is the cumulative distribution function of $X$.
Proof: Because the cumulative distribution function gives the probability of a random variable being smaller than a given value,
\[\label{eq:cdf-Pr-leq} F_X(x) = \mathrm{Pr}(X \leq x) \; ,\]we have
\[\label{eq:cdf-Pr-geq} 1 - F_X(x) = \mathrm{Pr}(X > x) \; ,\]such that
\[\label{eq:mean-cdf-s1} \int_{0}^{\infty} (1 - F_X(x)) \, \mathrm{d}x = \int_{0}^{\infty} \mathrm{Pr}(X > x) \, \mathrm{d}x\]which, using the probability density function of $X$, can be rewritten as
\[\label{eq:mean-cdf-s2} \begin{split} \int_{0}^{\infty} (1 - F_X(x)) \, \mathrm{d}x &= \int_{0}^{\infty} \int_{x}^{\infty} f_X(z) \, \mathrm{d}z \, \mathrm{d}x \\ &= \int_{0}^{\infty} \int_{0}^{z} f_X(z) \, \mathrm{d}x \, \mathrm{d}z \\ &= \int_{0}^{\infty} f_X(z) \int_{0}^{z} 1 \, \mathrm{d}x \, \mathrm{d}z \\ &= \int_{0}^{\infty} [x]_{0}^{z} \cdot f_X(z) \, \mathrm{d}z \\ &= \int_{0}^{\infty} z \cdot f_X(z) \, \mathrm{d}z \\ \end{split}\]and by applying the definition of the expected value, we see that
\[\label{eq:mean-cdf-s3} \int_{0}^{\infty} (1 - F_X(x)) \, \mathrm{d}x = \int_{0}^{\infty} z \cdot f_X(z) \, \mathrm{d}z = \mathrm{E}(X)\]which proves the identity given above.
∎
Sources: - Kemp, Graham (2014): "Expected value of a non-negative random variable"; in: StackExchange Mathematics, retrieved on 2020-05-18; URL: https://math.stackexchange.com/questions/958472/expected-value-of-a-non-negative-random-variable.
Metadata: ID: P103 | shortcut: mean-nnrvar | author: JoramSoch | date: 2020-05-18, 23:54.