Proof: Mean of the matrix-normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Matrix-variate continuous distributions ▷
Matrix-normal distribution ▷
Mean
Metadata: ID: P341 | shortcut: matn-mean | author: JoramSoch | date: 2022-09-15, 12:05.
Theorem: Let $X$ be a random matrix following a matrix-normal distribution:
\[\label{eq:matn} X \sim \mathcal{MN}(M, U, V) \; .\]Then, the mean or expected value of $X$ is
\[\label{eq:matn-mean} \mathrm{E}(X) = M \; .\]Proof: When $X$ follows a matrix-normal distribution, its vectorized version follows a multivariate normal distribution
\[\label{eq:matn-mvn} \mathrm{vec}(X) \sim \mathcal{N}(\mathrm{vec}(M), V \otimes U)\]and the expected value of this multivariate normal distribution is
\[\label{eq:mvn-mean} \mathrm{E}[\mathrm{vec}(X)] = \mathrm{vec}(M) \; .\]Since the expected value of a random matrix is calculated element-wise, we can invert the vectorization operator to get:
\[\label{eq:matn-mean-qed} \mathrm{E}[X] = M \; .\]∎
Sources: - Wikipedia (2022): "Matrix normal distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2022-09-15; URL: https://en.wikipedia.org/wiki/Matrix_normal_distribution#Expected_values.
Metadata: ID: P341 | shortcut: matn-mean | author: JoramSoch | date: 2022-09-15, 12:05.