Proof: Quantile function of the log-normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Log-normal distribution ▷
Quantile function
Metadata: ID: P326 | shortcut: lognorm-qf | author: majapavlo | date: 2022-07-09, 11:05.
Theorem: Let $X$ be a random variable following a log-normal distribution:
\[\label{eq:lognorm} X \sim \ln \mathcal{N}(\mu, \sigma^2) \; .\]Then, the quantile function of $X$ is
\[\label{eq:lognorm-qf} Q_X(p) = \exp( \mu + \sqrt{2} \sigma \cdot \mathrm{erf}^{-1}(2p-1) )\]where $\mathrm{erf}^{-1}(x)$ is the inverse error function.
Proof: The cumulative distribution function of the log-normal distribution is:
\[\label{eq:lognorm-cdf} F_X(x) = \frac{1}{2} \left[ 1 + \mathrm{erf}\left( \frac{\ln x-\mu}{\sqrt{2} \sigma} \right) \right] \; .\]From this point forward, the proof is similar to the derivation of the quantile function for the normal distribution. Because the cumulative distribution function (CDF) is strictly monotonically increasing, the quantile function is equal to the inverse of the CDF:
\[\label{eq:lognorm-qf-s1} Q_X(p) = F_X^{-1}(x) \; .\]This can be derived by rearranging equation \eqref{eq:lognorm-cdf}:
\[\label{eq:lognorm-qf-s2} \begin{split} p &= \frac{1}{2} \left[ 1 + \mathrm{erf}\left( \frac{\ln x-\mu}{\sqrt{2} \sigma} \right) \right] \\ 2 p - 1 &= \mathrm{erf}\left( \frac{\ln x-\mu}{\sqrt{2} \sigma} \right) \\ \mathrm{erf}^{-1}(2p-1) &= \frac{\ln x-\mu}{\sqrt{2} \sigma} \\ x &= \exp(\mu + \sqrt{2}\sigma \cdot \mathrm{erf}^{-1}(2p-1) ) \; . \end{split}\]∎
Sources: - Wikipedia (2022): "Log-normal distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2022-07-08; URL: https://en.wikipedia.org/wiki/Log-normal_distribution#Mode,_median,_quantiles.
Metadata: ID: P326 | shortcut: lognorm-qf | author: majapavlo | date: 2022-07-09, 11:05.