Proof: Quantile function of the normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Normal distribution ▷
Quantile function
Metadata: ID: P87 | shortcut: norm-qf | author: JoramSoch | date: 2020-03-20, 04:47.
Theorem: Let $X$ be a random variable following a normal distributions:
\[\label{eq:norm} X \sim \mathcal{N}(\mu, \sigma^2) \; .\]Then, the quantile function of $X$ is
\[\label{eq:norm-qf} Q_X(p) = \sqrt{2}\sigma \cdot \mathrm{erf}^{-1}(2p-1) + \mu\]where $\mathrm{erf}^{-1}(x)$ is the inverse error function.
Proof: The cumulative distribution function of the normal distribution is:
\[\label{eq:norm-cdf} F_X(x) = \frac{1}{2} \left[ 1 + \mathrm{erf}\left( \frac{x-\mu}{\sqrt{2} \sigma} \right) \right] \; .\]Because the cumulative distribution function (CDF) is strictly monotonically increasing, the quantile function is equal to the inverse of the CDF:
\[\label{eq:norm-qf-s1} Q_X(p) = F_X^{-1}(x) \; .\]This can be derived by rearranging equation \eqref{eq:norm-cdf}:
\[\label{eq:norm-qf-s2} \begin{split} p &= \frac{1}{2} \left[ 1 + \mathrm{erf}\left( \frac{x-\mu}{\sqrt{2} \sigma} \right) \right] \\ 2 p - 1 &= \mathrm{erf}\left( \frac{x-\mu}{\sqrt{2} \sigma} \right) \\ \mathrm{erf}^{-1}(2p-1) &= \frac{x-\mu}{\sqrt{2} \sigma} \\ x &= \sqrt{2}\sigma \cdot \mathrm{erf}^{-1}(2p-1) + \mu \; . \end{split}\]∎
Sources: - Wikipedia (2020): "Normal distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2020-03-20; URL: https://en.wikipedia.org/wiki/Normal_distribution#Quantile_function.
Metadata: ID: P87 | shortcut: norm-qf | author: JoramSoch | date: 2020-03-20, 04:47.