Proof: Differential entropy of the gamma distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Gamma distribution ▷
Differential entropy
Metadata: ID: P239 | shortcut: gam-dent | author: JoramSoch | date: 2021-07-14, 07:37.
Theorem: Let $X$ be a random variable following a gamma distribution:
\[\label{eq:gam} X \sim \mathrm{Gam}(a, b)\]Then, the differential entropy of $X$ in nats is
\[\label{eq:gam-dent} \mathrm{h}(X) = a + \ln \Gamma(a) + (1-a) \cdot \psi(a) + \ln b \; .\]Proof: The differential entropy of a random variable is defined as
\[\label{eq:dent} \mathrm{h}(X) = - \int_{\mathcal{X}} p(x) \, \log_b p(x) \, \mathrm{d}x \; .\]To measure $h(X)$ in nats, we set $b = e$, such that
\[\label{eq:dent-nats} \mathrm{h}(X) = - \mathrm{E}\left[ \ln p(x) \right] \; .\]With the probability density function of the gamma distribution, the differential entropy of $X$ is:
\[\label{eq:gam-dent-s1} \begin{split} \mathrm{h}(X) &= - \mathrm{E}\left[ \ln \left( \frac{b^a}{\Gamma(a)} x^{a-1} \exp[-b x] \right) \right] \\ &= - \mathrm{E}\left[ a \cdot \ln b - \ln \Gamma(a) + (a-1) \ln x - b x \right] \\ &= - a \cdot \ln b + \ln \Gamma(a) - (a-1) \cdot \mathrm{E}(\ln x) + b \cdot \mathrm{E}(x) \; . \end{split}\]Using the mean and logarithmic expectation of the gamma distribution
\[\label{eq:gam-mean-logmean} X \sim \mathrm{Gam}(a, b) \quad \Rightarrow \quad \mathrm{E}(X) = \frac{a}{b} \quad \text{and} \quad \mathrm{E}(\ln X) = \psi(a) - \ln(b) \; ,\]the differential entropy of $X$ becomes:
\[\label{eq:gam-dent-s2} \begin{split} \mathrm{h}(X) &= - a \cdot \ln b + \ln \Gamma(a) - (a-1) \cdot (\psi(a) - \ln b) + b \cdot \frac{a}{b} \\ &= - a \cdot \ln b + \ln \Gamma(a) + (1-a) \cdot \psi(a) + a \cdot \ln b - \ln b + a \\ &= a + \ln \Gamma(a) + (1-a) \cdot \psi(a) - \ln b \; . \end{split}\]∎
Sources: - Wikipedia (2021): "Gamma distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2021-07-14; URL: https://en.wikipedia.org/wiki/Gamma_distribution#Information_entropy.
Metadata: ID: P239 | shortcut: gam-dent | author: JoramSoch | date: 2021-07-14, 07:37.