Proof: Mean of the exponential distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Exponential distribution ▷
Mean
Metadata: ID: P47 | shortcut: exp-mean | author: JoramSoch | date: 2020-02-10, 21:57.
Theorem: Let $X$ be a random variable following an exponential distribution:
\[\label{eq:exp} X \sim \mathrm{Exp}(\lambda) \; .\]Then, the mean or expected value of $X$ is
\[\label{eq:exp-mean} \mathrm{E}(X) = \frac{1}{\lambda} \; .\]Proof: The expected value is the probability-weighted average over all possible values:
\[\label{eq:mean} \mathrm{E}(X) = \int_{\mathcal{X}} x \cdot f_\mathrm{X}(x) \, \mathrm{d}x \; .\]With the probability density function of the exponential distribution, this reads:
\[\label{eq:exp-mean-s1} \begin{split} \mathrm{E}(X) &= \int_{0}^{+\infty} x \cdot \lambda \exp(-\lambda x) \, \mathrm{d}x \\ &= \lambda \int_{0}^{+\infty} x \cdot \exp(-\lambda x) \, \mathrm{d}x \; . \end{split}\]Using the following anti-derivative
\[\label{eq:exp-mean-s2} \int x \cdot \exp(-\lambda x) \, \mathrm{d}x = \left( - \frac{1}{\lambda} x - \frac{1}{\lambda^2} \right) \exp(-\lambda x) \; ,\]the expected value becomes
\[\label{eq:exp-mean-s3} \begin{split} \mathrm{E}(X) &= \lambda \left[ \left( - \frac{1}{\lambda} x - \frac{1}{\lambda^2} \right) \exp(-\lambda x) \right]_{0}^{+\infty} \\ &= \lambda \left[ \lim_{x \to \infty} \left( - \frac{1}{\lambda} x - \frac{1}{\lambda^2} \right) \exp(-\lambda x) - \left( - \frac{1}{\lambda} \cdot 0 - \frac{1}{\lambda^2} \right) \exp(-\lambda \cdot 0) \right] \\ &= \lambda \left[ 0 + \frac{1}{\lambda^2} \right] \\ &= \frac{1}{\lambda} \; . \end{split}\]∎
Sources: - Koch, Karl-Rudolf (2007): "Expected Value"; in: Introduction to Bayesian Statistics, Springer, Berlin/Heidelberg, 2007, p. 39, eq. 2.142a; URL: https://www.springer.com/de/book/9783540727231; DOI: 10.1007/978-3-540-72726-2.
Metadata: ID: P47 | shortcut: exp-mean | author: JoramSoch | date: 2020-02-10, 21:57.