Proof: Chebyshev's inequality
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Expected value ▷
Chebyshev's inequality
Metadata: ID: P482 | shortcut: cheb-ineq | author: JoramSoch | date: 2025-01-10, 12:27.
Theorem: Let $X$ be a random variable with finite expected value $\mu$ and finite variance $\sigma^2$. Then, for any positive real number $k > 0$, the following inequality holds:
\[\label{eq:cheb-ineq} \mathrm{Pr}\left( |X-\mu| \geq k \sigma \right) \leq \frac{1}{k^2} \; .\]Proof: Markov’s inequality states that, for any positive real number $a > 0$, the probability that $Y$ is larger than or equal to $a$ is smaller than or equal to the expected value of $Y$, divided by $a$:
\[\label{eq:mark-ineq} \mathrm{Pr}(Y \geq a) \leq \frac{\mathrm{E}(Y)}{a} \; .\]The variance of a random variable is defined as:
\[\label{eq:var} \sigma^2 = \mathrm{Var}(X) = \mathrm{E}\left[ (X-\mu)^2 \right] \quad \text{where} \quad \mu = \mathrm{E}(X) \; .\]Let $Y = (X-\mu)^2$ and $a = (k \sigma)^2$. Using Markov’s inequality, we then have:
\[\label{eq:cheb-ineq-qed} \begin{split} \mathrm{Pr}\left( |X-\mu| \geq k \sigma \right) &= \mathrm{Pr}\left( (X-\mu)^2 \geq (k \sigma)^2 \right) \\ &\overset{\eqref{eq:mark-ineq}}{\leq} \frac{\mathrm{E}\left[ (X-\mu)^2 \right]}{(k \sigma)^2} \\ &\overset{\eqref{eq:var}}{=} \frac{\sigma^2}{k^2 \sigma^2} \\ &= \frac{1}{k^2} \; . \end{split}\]∎
Sources: - Wikipedia (2025): "Chebyshev's inequality"; in: Wikipedia, the free encyclopedia, retrieved on 2025-01-10; URL: https://en.wikipedia.org/wiki/Chebyshev%27s_inequality#Proof.
Metadata: ID: P482 | shortcut: cheb-ineq | author: JoramSoch | date: 2025-01-10, 12:27.