Proof: Cumulative distribution function of the binomial distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate discrete distributions ▷
Binomial distribution ▷
Cumulative distribution function
Metadata: ID: P488 | shortcut: bin-cdf | author: JoramSoch | date: 2025-02-06, 14:37.
Theorem: Let $X$ be a random variable following a binomial distribution:
\[\label{eq:bin} X \sim \mathrm{Bin}(n,p) \; .\]Then, the cumulative distribution function of $X$ is
\[\label{eq:bin-cdf} F_X(x) = \sum_{k=0}^{x} {n \choose k} \, p^k \, (1-p)^{n-k} \; .\]Proof: The cumulative distribution function is defined as
\[\label{eq:cdf} F_X(x) = \mathrm{Pr}(X \leq x)\]which, in terms of the probability mass function, is given by
\[\label{eq:cdf-pmf} F_X(x) = \sum_{\substack{t \in \mathcal{X} \\ t \leq x}} f_X(t) \; .\]The probability mass function of the binomial distribution is
\[\label{eq:bin-pmf} f_X(x) = {n \choose x} \, p^x \, (1-p)^{n-x} \; ,\]so that the cumulative distribution function of the binomial distribution becomes
\[\label{eq:bin-cdf-qed} \begin{split} F_X(x) &\overset{\eqref{eq:cdf-pmf}}{=} \sum_{k=0}^{x} f_X(k) \\ &\overset{\eqref{eq:bin-pmf}}{=} \sum_{k=0}^{x} {n \choose k} \, p^k \, (1-p)^{n-k} \; . \end{split}\]∎
Sources: - Wikipedia (2025): "Binomial distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2025-02-06; URL: https://en.wikipedia.org/wiki/Binomial_distribution#Cumulative_distribution_function.
Metadata: ID: P488 | shortcut: bin-cdf | author: JoramSoch | date: 2025-02-06, 14:37.