Proof: Cumulative distribution function in terms of probability mass function of a discrete random variable
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Cumulative distribution function ▷
Cumulative distribution function of discrete random variable
Metadata: ID: P189 | shortcut: cdf-pmf | author: JoramSoch | date: 2020-11-12, 06:03.
Theorem: Let $X$ be a discrete random variable with possible values $\mathcal{X}$ and probability mass function $f_X(x)$. Then, the cumulative distribution function of $X$ is
\[\label{eq:cdf-pmf} F_X(x) = \sum_{\overset{t \in \mathcal{X}}{t \leq x}} f_X(t) \; .\]Proof: The cumulative distribution function of a random variable $X$ is defined as the probability that $X$ is smaller than $x$:
\[\label{eq:cdf} F_X(x) = \mathrm{Pr}(X \leq x) \; .\]The probability mass function of a discrete random variable $X$ returns the probability that $X$ takes a particular value $x$:
\[\label{eq:pmf} f_X(x) = \mathrm{Pr}(X = x) \; .\]Taking these two definitions together, we have:
\[\label{eq:cdf-pmf-qed} \begin{split} F_X(x) &\overset{\eqref{eq:cdf}}{=} \sum_{\overset{t \in \mathcal{X}}{t \leq x}} \mathrm{Pr}(X = t) \\ &\overset{\eqref{eq:pmf}}{=} \sum_{\overset{t \in \mathcal{X}}{t \leq x}} f_X(t) \; . \end{split}\]∎
Sources: Metadata: ID: P189 | shortcut: cdf-pmf | author: JoramSoch | date: 2020-11-12, 06:03.