Proof: Variance of the Bernoulli distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate discrete distributions ▷
Bernoulli distribution ▷
Variance
Metadata: ID: P301 | shortcut: bern-var | author: JoramSoch | date: 2022-01-20, 15:06.
Theorem: Let $X$ be a random variable following a Bernoulli distribution:
\[\label{eq:bern} X \sim \mathrm{Bern}(p) \; .\]Then, the variance of $X$ is
\[\label{eq:bern-var} \mathrm{Var}(X) = p \, (1-p) \; .\]Proof: The variance is the probability-weighted average of the squared deviation from the expected value across all possible values
\[\label{eq:var} \mathrm{Var}(X) = \sum_{x \in \mathcal{X}} (x - \mathrm{E}(X))^2 \cdot \mathrm{Pr}(X = x)\]and can also be written in terms of the expected values:
\[\label{eq:var-mean} \mathrm{Var}(X) = \mathrm{E}\left( X^2 \right) - \mathrm{E}(X)^2 \; .\]The mean of a Bernoulli random variable is
\[\label{eq:bern-mean} X \sim \mathrm{Bern}(p) \quad \Rightarrow \quad \mathrm{E}(X) = p\]and the mean of a squared Bernoulli random variable is
\[\label{eq:bern-sqr-mean} \mathrm{E}\left( X^2 \right) = 0^2 \cdot \mathrm{Pr}(X = 0) + 1^2 \cdot \mathrm{Pr}(X = 1) = 0 \cdot (1-p) + 1 \cdot p = p \; .\]Combining \eqref{eq:var-mean}, \eqref{eq:bern-mean} and \eqref{eq:bern-sqr-mean}, we have:
\[\label{eq:bern-var-qed} \mathrm{Var}(X) = p - p^2 = p \, (1-p) \; .\]∎
Sources: - Wikipedia (2022): "Bernoulli distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2022-01-20; URL: https://en.wikipedia.org/wiki/Bernoulli_distribution#Variance.
Metadata: ID: P301 | shortcut: bern-var | author: JoramSoch | date: 2022-01-20, 15:06.