Definition: Likelihood ratio
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Frequentist statistics ▷
Likelihood theory ▷
Likelihood ratio
Sources:
Metadata: ID: D198 | shortcut: lr | author: JoramSoch | date: 2024-06-14, 14:44.
Definition: Let $m_0$ and $m_1$ be two generative models describing the same measured data $y$ using different model parameters $\theta_0 \in \Theta_0$ and $\theta_1 \in \Theta_1$. Then, the quotient of the maximized likelihood functions of these two models is denoted as $\Lambda_{01}$ and is called the likelihood ratio of $m_0$ relative to $m_1$:
\[\label{eq:lr} \Lambda_{01} = \frac{\operatorname*{max}_{\theta_0 \in \Theta_0} \mathcal{L}_{m_0}(\theta_0)}{\operatorname*{max}_{\theta_1 \in \Theta_1} \mathcal{L}_{m_1}(\theta_1)} = \frac{p(y|\hat{\theta}_0,m_0)}{p(y|\hat{\theta}_1,m_1)} \; .\]- Wikipedia (2024): "Neyman-Pearson lemma"; in: Wikipedia, the free encyclopedia, retrieved on 2024-06-14; URL: https://en.wikipedia.org/wiki/Neyman%E2%80%93Pearson_lemma#Example.
Metadata: ID: D198 | shortcut: lr | author: JoramSoch | date: 2024-06-14, 14:44.