Definition: Maximum likelihood estimation
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Frequentist statistics ▷
Likelihood theory ▷
Maximum likelihood estimation
Sources:
Metadata: ID: D60 | shortcut: mle | author: JoramSoch | date: 2020-05-15, 23:05.
Definition: Let there be a generative model $m$ describing measured data $y$ using model parameters $\theta$. Then, the parameter values maximizing the likelihood function or log-likelihood function are called “maximum likelihood estimates” of $\theta$:
\[\label{eq:mle} \hat{\theta} = \operatorname*{arg\,max}_\theta \mathcal{L}_m(\theta) = \operatorname*{arg\,max}_\theta \mathrm{LL}_m(\theta) \; .\]The process of calculating $\hat{\theta}$ is called “maximum likelihood estimation” and the functional form leading from $y$ to $\hat{\theta}$ given $m$ is called “maximum likelihood estimator”. Maximum likelihood estimation, estimator and estimates may all be abbreviated as “MLE”.
Metadata: ID: D60 | shortcut: mle | author: JoramSoch | date: 2020-05-15, 23:05.