Definition: Deviance information criterion
Definition: Let $m$ be a full probability model with likelihood function $p(y \vert \theta, m)$ and prior distribution $p(\theta \vert m)$. Together, likelihood function and prior distribution imply a posterior distribution $p(\theta \vert y, m)$. Consider the deviance which is minus two times the log-likelihood function:
\[\label{eq:dev} D(\theta) = -2 \log p(y|\theta,m) \; .\]Then, the deviance information criterion (DIC) of the model $m$ is defined as
\[\label{eq:DIC} \mathrm{DIC}(m) = -2 \log p(y|\left\langle \theta \right\rangle, m) + 2 \, p_D\]where $\log p(y \vert \left\langle \theta \right\rangle, m)$ is the log-likelihood function at the posterior expectation and the “effective number of parameters” $p_D$ is the difference between the expectation of the deviance and the deviance at the expectation:
\[\label{eq:DIC-pD} p_D = \left\langle D(\theta) \right\rangle - D(\left\langle \theta \right\rangle) \; .\]In these equations, $\left\langle \cdot \right\rangle$ denotes expected values across the posterior distribution.
- Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002): "Bayesian measures of model complexity and fit"; in: Journal of the Royal Statistical Society, Series B: Statistical Methodology, vol. 64, iss. 4, pp. 583-639; URL: https://rss.onlinelibrary.wiley.com/doi/10.1111/1467-9868.00353; DOI: 10.1111/1467-9868.00353.
- Soch J, Allefeld C (2018): "MACS – a new SPM toolbox for model assessment, comparison and selection"; in: Journal of Neuroscience Methods, vol. 306, pp. 19-31, eqs. 10-12; URL: https://www.sciencedirect.com/science/article/pii/S0165027018301468; DOI: 10.1016/j.jneumeth.2018.05.017.
Metadata: ID: D25 | shortcut: dic | author: JoramSoch | date: 2020-02-25, 12:46.