Definition: Cumulative distribution function
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Cumulative distribution function ▷
Definition
Sources:
Metadata: ID: D13 | shortcut: cdf | author: JoramSoch | date: 2020-02-17, 22:07.
Definition: The cumulative distribution function (CDF) of a random variable $X$ at a given value $x$ is defined as the probability that $X$ is smaller than $x$:
\[\label{eq:cdf} F_X(x) = \mathrm{Pr}(X \leq x) \; .\]
1) If $X$ is a discrete random variable with possible outcomes $\mathcal{X}$ and the probability mass function $f_X(x)$, then the cumulative distribution function is the function $F_X(x): \mathbb{R} \to [0,1]$ with
2) If $X$ is a continuous random variable with possible outcomes $\mathcal{X}$ and the probability density function $f_X(x)$, then the cumulative distribution function is the function $F_X(x): \mathbb{R} \to [0,1]$ with
- Wikipedia (2020): "Cumulative distribution function"; in: Wikipedia, the free encyclopedia, retrieved on 2020-02-17; URL: https://en.wikipedia.org/wiki/Cumulative_distribution_function#Definition.
Metadata: ID: D13 | shortcut: cdf | author: JoramSoch | date: 2020-02-17, 22:07.