Index: The Book of Statistical ProofsModel SelectionClassical information criteriaAkaike information criterion ▷ Corrected AIC

Definition: Let $m$ be a generative model with likelihood function $p(y \vert \theta, m)$ and maximum likelihood estimates

\[\label{eq:MLE} \hat{\theta} = \operatorname*{arg\,max}_\theta \log p(y | \theta, m) \; .\]

Then, the corrected Akaike information criterion ($\mathrm{AIC}_\mathrm{c}$) of this model is defined as

\[\label{eq:AICc} \mathrm{AIC}_\mathrm{c}(m) = \mathrm{AIC}(m) + \frac{2k^2 + 2k}{n-k-1}\]

where $\mathrm{AIC}(m)$ is the Akaike information criterion and $k$ is the number of free parameters estimated via \eqref{eq:MLE}.

 
Sources:

Metadata: ID: D171 | shortcut: aicc | author: JoramSoch | date: 2022-02-11, 06:49.