Proof: Paired z-test for dependent observations
Index:
The Book of Statistical Proofs ▷
Statistical Models ▷
Univariate normal data ▷
Univariate Gaussian with known variance ▷
Paired z-test
Metadata: ID: P210 | shortcut: ugkv-ztestp | author: JoramSoch | date: 2021-03-24, 05:10.
Theorem: Let $y_{i1}$ and $y_{i2}$ with $i = 1, \ldots, n$ be paired observations, such that
\[\label{eq:ugkv} y_{i1} \sim \mathcal{N}(y_{i2} + \mu, \sigma^2), \quad i = 1, \ldots, n\]is a univariate Gaussian data set with unknown shift $\mu$ and known variance $\sigma^2$. Then, the test statistic
\[\label{eq:z} z = \sqrt{n} \, \frac{\bar{d}-\mu_0}{\sigma} \quad \text{where} \quad d_i = y_{i1} - y_{i2}\]with sample mean $\bar{d}$ follows a standard normal distribution
\[\label{eq:z-dist} z \sim \mathcal{N}(0, 1)\]under the null hypothesis
\[\label{eq:ztestp-h0} H_0: \; \mu = \mu_0 \; .\]Proof: Define the pair-wise difference $d_i = y_{i1} - y_{i2}$ which is, according to the linearity of the expected value and the invariance of the variance under addition, distributed as
\[\label{eq:d-dist} d_i = y_{i1} - y_{i2} \sim \mathcal{N}(\mu, \sigma^2), \quad i = 1, \ldots, n \; .\]Therefore, $d_1, \ldots, d_n$ satisfy the conditions of the one-sample z-test which results in the test statistic given by \eqref{eq:z}.
∎
Sources: - Wikipedia (2021): "Z-test"; in: Wikipedia, the free encyclopedia, retrieved on 2021-03-24; URL: https://en.wikipedia.org/wiki/Z-test#Use_in_location_testing.
- Wikipedia (2021): "Gauß-Test"; in: Wikipedia – Die freie Enzyklopädie, retrieved on 2021-03-24; URL: https://de.wikipedia.org/wiki/Gau%C3%9F-Test#Zweistichproben-Gau%C3%9F-Test_f%C3%BCr_abh%C3%A4ngige_(verbundene)_Stichproben.
Metadata: ID: P210 | shortcut: ugkv-ztestp | author: JoramSoch | date: 2021-03-24, 05:10.