Proof: Simple linear regression is a special case of multiple linear regression
Index:
The Book of Statistical Proofs ▷
Statistical Models ▷
Univariate normal data ▷
Simple linear regression ▷
Special case of multiple linear regression
Metadata: ID: P281 | shortcut: slr-mlr | author: JoramSoch | date: 2021-11-09, 07:57.
Theorem: Simple linear regression is a special case of multiple linear regression with design matrix $X$ and regression coefficients $\beta$
\[\label{eq:slr-mlr} X = \left[ \begin{matrix} 1_n & x \end{matrix} \right] \quad \text{and} \quad \beta = \left[ \begin{matrix} \beta_0 \\ \beta_1 \end{matrix} \right]\]where $1_n$ is an $n \times 1$ vector of ones, $x$ is the $n \times 1$ single predictor variable, $\beta_0$ is the intercept and $\beta_1$ is the slope of the regression line.
Proof: Without loss of generality, consider the simple linear regression case with uncorrelated errors:
\[\label{eq:slr} y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \; \varepsilon_i \sim \mathcal{N}(0, \sigma^2), \; i = 1,\ldots,n \; .\]In matrix notation and using the multivariate normal distribution, this can also be written as
\[\label{eq:slr-mlr-s1} \begin{split} y &= \beta_0 1_n + \beta_1 x + \varepsilon, \; \varepsilon \sim \mathcal{N}(0, I_n) \\ y &= \left[ \begin{matrix} 1_n & x \end{matrix} \right] \left[ \begin{matrix} \beta_0 \\ \beta_1 \end{matrix} \right] + \varepsilon, \; \varepsilon \sim \mathcal{N}(0, I_n) \; . \end{split}\]Comparing with the multiple linear regression equations for uncorrelated errors, we finally note:
\[\label{eq:slr-mlr-s3} y = X\beta + \varepsilon \quad \text{with} \quad X = \left[ \begin{matrix} 1_n & x \end{matrix} \right] \quad \text{and} \quad \beta = \left[ \begin{matrix} \beta_0 \\ \beta_1 \end{matrix} \right] \; .\]In the case of correlated observations, the error distribution changes to:
\[\label{eq:mlr-noise} \varepsilon \sim \mathcal{N}(0, \sigma^2 V) \; .\]∎
Sources: Metadata: ID: P281 | shortcut: slr-mlr | author: JoramSoch | date: 2021-11-09, 07:57.