Proof: The regression line goes through the center of mass point
Index:
The Book of Statistical Proofs ▷
Statistical Models ▷
Univariate normal data ▷
Simple linear regression ▷
Regression line includes center of mass
Metadata: ID: P275 | shortcut: slr-comp | author: JoramSoch | date: 2021-10-27, 12:52.
Theorem: In simple linear regression, the regression line estimated using ordinary least squares includes the point $M(\bar{x},\bar{y})$.
Proof: The fitted regression line is described by the equation
\[\label{eq:slr-ols-regline} y = \hat{\beta}_0 + \hat{\beta}_1 x \quad \text{where} \quad x,y \in \mathbb{R} \; .\]Plugging in the coordinates of $M$ and the ordinary least squares estimate of the intercept, we obtain
\[\label{eq:slr-ols} \begin{split} \bar{y} &= \hat{\beta}_0 + \hat{\beta}_1 \bar{x} \\ \bar{y} &= \bar{y} - \hat{\beta}_1 \bar{x} + \hat{\beta}_1 \bar{x} \\ \bar{y} &= \bar{y} \; . \end{split}\]which is a true statement. Thus, the regression line goes through the center of mass point $(\bar{x},\bar{y})$, if the model includes an intercept term $\beta_0$.
∎
Sources: - Wikipedia (2021): "Simple linear regression"; in: Wikipedia, the free encyclopedia, retrieved on 2021-10-27; URL: https://en.wikipedia.org/wiki/Simple_linear_regression#Numerical_properties.
Metadata: ID: P275 | shortcut: slr-comp | author: JoramSoch | date: 2021-10-27, 12:52.