Index: The Book of Statistical ProofsModel SelectionGoodness-of-fit measuresR-squared ▷ Relationship to residual variance

Theorem: Given a linear regression model with independent observations

\[\label{eq:mlr} y = X\beta + \varepsilon, \; \varepsilon_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2) \; ,\]

the coefficient of determination can be expressed in terms of residual variances as

\[\label{eq:rsq-resvar} R^2 = 1 - \frac{(n-p) \cdot \hat{\sigma}^2}{(n-1) \cdot s^2}\]

where $n$ is the number of observations, $p$ is the number of predictors, $\hat{\sigma}^2$ is an unbiased estimate of the noise variance $\sigma^2$ and $s^2$ is the unbiased sample variance of $y$.

Proof: The coefficient of determination is given by

\[\label{eq:rsq} R^2 = 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}}\]

where $\mathrm{RSS}$ is the residual sum of squares

\[\label{eq:rss} \mathrm{RSS} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 \quad \text{where} \quad \hat{y} = X \hat{\beta}\]

and $\mathrm{TSS}$ is the total sum of squares

\[\label{eq:tss} \mathrm{TSS} = \sum_{i=1}^n (y_i - \bar{y})^2 \quad \text{where} \quad \bar{y} = \frac{1}{n} \sum_{i=1}^n y_i \; .\]

Note that the residual sum of squares can be written as:

\[\label{eq:rss-dev} \mathrm{RSS} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n (y_i - (X \hat{\beta})_i)^2 = (y-X\hat{\beta})^\mathrm{T} (y-X\hat{\beta}) \; .\]

The unbiased estimate of the noise variance is

\[\label{eq:sigma-unb} \hat{\sigma}^2 = \frac{1}{n-p} (y-X\hat{\beta})^\mathrm{T} (y-X\hat{\beta})\]

and the unbiased sample variance of the dependent variable is

\[\label{eq:var-samp-unb} s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2 \; ,\]

Combining \eqref{eq:rsq}, \eqref{eq:rss} and \eqref{eq:tss}, the coefficient of determination can be rewritten as follows:

\[\label{eq:rsq-resvar-qed} \begin{split} R^2 &\overset{\eqref{eq:rsq}}{=} 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}} \\ &\overset{\eqref{eq:tss}}{=} 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2} \\ &\overset{\eqref{eq:rss-dev}}{=} 1 - \frac{(y-X\hat{\beta})^\mathrm{T} (y-X\hat{\beta})}{\sum_{i=1}^{n} (y_i - \bar{y})^2} \\ &= 1 - \frac{(n-p) \cdot \frac{1}{n-p} (y-X\hat{\beta})^\mathrm{T} (y-X\hat{\beta})}{(n-1) \cdot \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2} \\ &\overset{\eqref{eq:sigma-unb}}{=} 1 - \frac{(n-p) \cdot \hat{\sigma}^2}{(n-1) \cdot \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2} \\ &\overset{\eqref{eq:var-samp-unb}}{=} 1 - \frac{(n-p) \cdot \hat{\sigma}^2}{(n-1) \cdot s^2} \; . \end{split}\]

This completes the proof.

Sources:

Metadata: ID: P440 | shortcut: rsq-resvar | author: JoramSoch | date: 2024-03-08, 10:57.