Proof: Probability of the complement
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Probability theory ▷
Probability axioms ▷
Probability of the complement
Metadata: ID: P245 | shortcut: prob-comp | author: JoramSoch | date: 2021-07-30, 12:14.
Theorem: The probability of a complement of a set is one minus the probability of this set:
\[\label{eq:prob-comp} p(\overline{A}) = 1 - p(A)\]where $\overline{A} = \Omega \setminus A$ and $\Omega$ is the sample space.
Proof: Since $A$ and $\overline{A}$ are mutually exclusive and $A \cup \overline{A} = \Omega$, the third axiom of probability implies:
\[\label{eq:pAAc} \begin{split} p(A \cup \overline{A}) &= p(A) + p(\overline{A}) \\ p(\Omega) &= p(A) + p(\overline{A}) \\ p(\overline{A}) &= p(\Omega) - p(A) \; . \end{split}\]The second axiom of probability states that $p(\Omega) =1$, such that we obtain:
\[\label{eq:prob-comp-qed} p(\overline{A}) = 1 - p(A) \; .\]∎
Sources: - A.N. Kolmogorov (1950): "Elementary Theory of Probability"; in: Foundations of the Theory of Probability, p. 6, eq. 2; URL: https://archive.org/details/foundationsofthe00kolm/page/6/mode/2up.
- Alan Stuart & J. Keith Ord (1994): "Probability and Statistical Inference"; in: Kendall's Advanced Theory of Statistics, Vol. 1: Distribution Theory, ch. 8.6, p. 288, eq. (c); URL: https://www.wiley.com/en-us/Kendall%27s+Advanced+Theory+of+Statistics%2C+3+Volumes%2C+Set%2C+6th+Edition-p-9780470669549.
- Wikipedia (2021): "Probability axioms"; in: Wikipedia, the free encyclopedia, retrieved on 2021-07-30; URL: https://en.wikipedia.org/wiki/Probability_axioms#The_complement_rule.
Metadata: ID: P245 | shortcut: prob-comp | author: JoramSoch | date: 2021-07-30, 12:14.