Proof: Probability mass function of the Poisson distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate discrete distributions ▷
Poisson distribution ▷
Probability mass function
Metadata: ID: P102 | shortcut: poiss-pmf | author: JoramSoch | date: 2020-05-14, 20:39.
Theorem: Let $X$ be a random variable following a Poisson distribution:
\[\label{eq:Poiss} X \sim \mathrm{Poiss}(\lambda) \; .\]Then, the probability mass function of $X$ is
\[\label{eq:Poiss-pmf} f_X(x) = \frac{\lambda^x \, e^{-\lambda}}{x!}, \; x \in \mathbb{N}_0 \; .\]Proof: This follows directly from the definition of the Poisson distribution.
∎
Sources: Metadata: ID: P102 | shortcut: poiss-pmf | author: JoramSoch | date: 2020-05-14, 20:39.