Proof: Posterior model probability in terms of log Bayes factor
Index:
The Book of Statistical Proofs ▷
Model Selection ▷
Bayesian model selection ▷
Posterior model probability ▷
Calculation from log Bayes factor
Metadata: ID: P73 | shortcut: pmp-lbf | author: JoramSoch | date: 2020-03-03, 12:27.
Theorem: Let $m_1$ and $m_2$ be two statistical models with the log Bayes factor $\mathrm{LBF}_{12}$ in favor of model $m_1$ and against model $m_2$. Then, if both models are equally likely apriori, the posterior model probability of $m_1$ is
\[\label{eq:PMP-LBF} p(m_1|y) = \frac{\exp(\mathrm{LBF}_{12})}{\exp(\mathrm{LBF}_{12}) + 1} \; .\]Proof: From Bayes’ rule, the posterior odds ratio is
\[\label{eq:post-odds-s1} \frac{p(m_1|y)}{p(m_2|y)} = \frac{p(y|m_1)}{p(y|m_2)} \cdot \frac{p(m_1)}{p(m_2)} \; .\]When both models are equally likely apriori, the prior odds ratio is one, such that
\[\label{eq:post-odds-s2} \frac{p(m_1|y)}{p(m_2|y)} = \frac{p(y|m_1)}{p(y|m_2)} \; .\]Now the right-hand side corresponds to the Bayes factor, therefore
\[\label{eq:post-odds-s4} \frac{p(m_1|y)}{p(m_2|y)} = \mathrm{BF}_{12} \; .\]Because the two posterior model probabilities add up to 1, we have
\[\label{eq:post-odds-s3} \frac{p(m_1|y)}{1-p(m_1|y)} = \mathrm{BF}_{12} \; .\]Now rearranging for the posterior probability, this gives
\[\label{eq:post-s1} p(m_1|y) = \frac{\mathrm{BF}_{12}}{\mathrm{BF}_{12} + 1} \; .\]Because the log Bayes factor is the logarithm of the Bayes factor, we finally have
\[\label{eq:post-s2} p(m_1|y) = \frac{\exp(\mathrm{LBF}_{12})}{\exp(\mathrm{LBF}_{12}) + 1} \; .\]∎
Sources: - Soch J, Allefeld C (2018): "MACS – a new SPM toolbox for model assessment, comparison and selection"; in: Journal of Neuroscience Methods, vol. 306, pp. 19-31, eq. 21; URL: https://www.sciencedirect.com/science/article/pii/S0165027018301468; DOI: 10.1016/j.jneumeth.2018.05.017.
- Zeidman P, Silson EH, Schwarzkopf DS, Baker CI, Penny W (2018): "Bayesian population receptive field modelling"; in: NeuroImage, vol. 180, pp. 173-187, eq. 11; URL: https://www.sciencedirect.com/science/article/pii/S1053811917307462; DOI: 10.1016/j.neuroimage.2017.09.008.
Metadata: ID: P73 | shortcut: pmp-lbf | author: JoramSoch | date: 2020-03-03, 12:27.