Proof: Derivation of the posterior model probability
Index:
The Book of Statistical Proofs ▷
Model Selection ▷
Bayesian model selection ▷
Posterior model probability ▷
Derivation
Metadata: ID: P139 | shortcut: pmp-der | author: JoramSoch | date: 2020-07-28, 03:58.
Theorem: Let there be a set of generative models $m_1, \ldots, m_M$ with model evidences $p(y \vert m_1), \ldots, p(y \vert m_M)$ and prior probabilities $p(m_1), \ldots, p(m_M)$. Then, the posterior probability of model $m_i$ is given by
\[\label{eq:PMP} p(m_i|y) = \frac{p(y|m_i) \, p(m_i)}{\sum_{j=1}^{M} p(y|m_j) \, p(m_j)}, \; i = 1, \ldots, M \; .\]Proof: From Bayes’ theorem, the posterior model probability of the $i$-th model can be derived as
\[\label{eq:PMP-s1} p(m_i|y) = \frac{p(y|m_i) \, p(m_i)}{p(y)} \; .\]Using the law of marginal probability, the denominator can be rewritten, such that
\[\label{eq:PMP-s2} p(m_i|y) = \frac{p(y|m_i) \, p(m_i)}{\sum_{j=1}^{M} p(y,m_j)} \; .\]Finally, using the law of conditional probability, we have
\[\label{eq:PMP-s3} p(m_i|y) = \frac{p(y|m_i) \, p(m_i)}{\sum_{j=1}^{M} p(y|m_j) \, p(m_j)} \; .\]∎
Sources: Metadata: ID: P139 | shortcut: pmp-der | author: JoramSoch | date: 2020-07-28, 03:58.