Index: The Book of Statistical ProofsGeneral TheoremsProbability theoryProbability density function ▷ Probability density function of strictly increasing function

Theorem: Let be a continuous random variable with possible outcomes \mathcal{X} and let g(x) be a strictly increasing function on the support of X. Then, the probability density function of Y = g(X) is given by

\label{eq:pdf-sifct} f_Y(y) = \left\{ \begin{array}{rl} f_X(g^{-1}(y)) \, \frac{\mathrm{d}g^{-1}(y)}{\mathrm{d}y} \; , & \text{if} \; y \in \mathcal{Y} \\ 0 \; , & \text{if} \; y \notin \mathcal{Y} \end{array} \right.

where g^{-1}(y) is the inverse function of g(x) and \mathcal{Y} is the set of possible outcomes of Y:

\label{eq:Y-range} \mathcal{Y} = \left\lbrace y = g(x): x \in \mathcal{X} \right\rbrace \; .

Proof: The cumulative distribution function of a strictly increasing function is

\label{eq:cdf-sifct} F_Y(y) = \left\{ \begin{array}{rl} 0 \; , & \text{if} \; y < \mathrm{min}(\mathcal{Y}) \\ F_X(g^{-1}(y)) \; , & \text{if} \; y \in \mathcal{Y} \\ 1 \; , & \text{if} \; y > \mathrm{max}(\mathcal{Y}) \end{array} \right.

Because the probability density function is the first derivative of the cumulative distribution function

\label{eq:pdf-cdf} f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x} \; ,

the probability density function of Y can be derived as follows:

1) If y does not belong to the support of Y, F_Y(y) is constant, such that

\label{eq:pdf-sifct-p1} f_Y(y) = 0, \quad \text{if} \quad y \notin \mathcal{Y} \; .

2) If y belongs to the support of Y, then f_Y(y) can be derived using the chain rule:

\label{eq:pdf-sifct-p2} \begin{split} f_Y(y) &\overset{\eqref{eq:pdf-cdf}}{=} \frac{\mathrm{d}}{\mathrm{d}y} F_Y(y) \\ &\overset{\eqref{eq:cdf-sifct}}{=} \frac{\mathrm{d}}{\mathrm{d}y} F_X(g^{-1}(y)) \\ &= f_X(g^{-1}(y)) \, \frac{\mathrm{d}g^{-1}(y)}{\mathrm{d}y} \; . \end{split}

Taking together \eqref{eq:pdf-sifct-p1} and \eqref{eq:pdf-sifct-p2}, eventually proves \eqref{eq:pdf-sifct}.

Sources:

Metadata: ID: P185 | shortcut: pdf-sifct | author: JoramSoch | date: 2020-10-29, 06:21.