Proof: Median of the normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Normal distribution ▷
Median
Metadata: ID: P16 | shortcut: norm-med | author: JoramSoch | date: 2020-01-09, 15:33.
Theorem: Let $X$ be a random variable following a normal distribution:
\[\label{eq:norm} X \sim \mathcal{N}(\mu, \sigma^2) \; .\]Then, the median of $X$ is
\[\label{eq:norm-median} \mathrm{median}(X) = \mu \; .\]Proof: The median is the value at which the cumulative distribution function is $1/2$:
\[\label{eq:median} F_X(\mathrm{median}(X)) = \frac{1}{2} \; .\]The cumulative distribution function of the normal distribution is
\[\label{eq:norm-cdf} F_X(x) = \frac{1}{2} \left[ 1 + \mathrm{erf} \left( \frac{x-\mu}{\sqrt{2}\sigma} \right) \right]\]where $\mathrm{erf}(x)$ is the error function. Thus, the inverse CDF is
\[\label{eq:norm-cdf-inv} x = \sqrt{2}\sigma \cdot \mathrm{erf}^{-1}(2p-1) + \mu\]where $\mathrm{erf}^{-1}(x)$ is the inverse error function. Setting $p = 1/2$, we obtain:
\[\label{eq:norm-med-qed} \mathrm{median}(X) = \sqrt{2}\sigma \cdot \mathrm{erf}^{-1}(0) + \mu = \mu \; .\]∎
Sources: Metadata: ID: P16 | shortcut: norm-med | author: JoramSoch | date: 2020-01-09, 15:33.