Proof: Full width at half maximum for the normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Normal distribution ▷
Full width at half maximum
Metadata: ID: P152 | shortcut: norm-fwhm | author: JoramSoch | date: 2020-08-19, 06:39.
Theorem: Let $X$ be a random variable following a normal distribution:
\[\label{eq:norm} X \sim \mathcal{N}(\mu, \sigma^2) \; .\]Then, the full width at half maximum (FWHM) of $X$ is
\[\label{eq:norm-fwhm} \mathrm{FWHM}(X) = 2 \sqrt{2 \ln 2} \sigma \; .\]Proof: The probability density function of the normal distribution is
\[\label{eq:norm-pdf} f_X(x) = \frac{1}{\sqrt{2 \pi} \sigma} \cdot \exp \left[ -\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 \right]\]and the mode of the normal distribution is
\[\label{eq:norm-mode} \mathrm{mode}(X) = \mu \; ,\]such that
\[\label{eq:norm-pdf-max} f_\mathrm{max} = f_X(\mathrm{mode}(X)) \overset{\eqref{eq:norm-mode}}{=} f_X(\mu) \overset{\eqref{eq:norm-pdf}}{=} \frac{1}{\sqrt{2 \pi} \sigma} \; .\]The FWHM bounds satisfy the equation
\[\label{eq:x-FHWM} f_X(x_\mathrm{FWHM}) = \frac{1}{2} f_\mathrm{max} \overset{\eqref{eq:norm-pdf-max}}{=} \frac{1}{2 \sqrt{2 \pi} \sigma} \; .\]Using \eqref{eq:norm-pdf}, we can develop this equation as follows:
\[\label{eq:x-FHWM-s1} \begin{split} \frac{1}{\sqrt{2 \pi} \sigma} \cdot \exp \left[ -\frac{1}{2} \left( \frac{x_\mathrm{FWHM}-\mu}{\sigma} \right)^2 \right] &= \frac{1}{2 \sqrt{2 \pi} \sigma} \\ \exp \left[ -\frac{1}{2} \left( \frac{x_\mathrm{FWHM}-\mu}{\sigma} \right)^2 \right] &= \frac{1}{2} \\ -\frac{1}{2} \left( \frac{x_\mathrm{FWHM}-\mu}{\sigma} \right)^2 &= \ln \frac{1}{2} \\ \left( \frac{x_\mathrm{FWHM}-\mu}{\sigma} \right)^2 &= -2 \ln \frac{1}{2} \\ \frac{x_\mathrm{FWHM}-\mu}{\sigma} &= \pm \sqrt{2 \ln 2} \\ x_\mathrm{FWHM}-\mu &= \pm \sqrt{2 \ln 2} \sigma \\ x_\mathrm{FWHM} &= \pm \sqrt{2 \ln 2} \sigma + \mu \; . \end{split}\]This implies the following two solutions for $x_\mathrm{FWHM}$
\[\label{eq:x-FHWM-s2} \begin{split} x_1 &= \mu - \sqrt{2 \ln 2} \sigma \\ x_2 &= \mu + \sqrt{2 \ln 2} \sigma \; , \end{split}\]such that the full width at half maximum of $X$ is
\[\label{eq:norm-fwhm-qed} \begin{split} \mathrm{FWHM}(X) &= \Delta x = x_2 - x_1 \\ &\overset{\eqref{eq:x-FHWM-s2}}{=} \left( \mu + \sqrt{2 \ln 2} \sigma \right) - \left( \mu - \sqrt{2 \ln 2} \sigma \right) \\ &= 2 \sqrt{2 \ln 2} \sigma \; . \end{split}\]∎
Sources: - Wikipedia (2020): "Full width at half maximum"; in: Wikipedia, the free encyclopedia, retrieved on 2020-08-19; URL: https://en.wikipedia.org/wiki/Full_width_at_half_maximum.
Metadata: ID: P152 | shortcut: norm-fwhm | author: JoramSoch | date: 2020-08-19, 06:39.