Proof: Marginal distributions of the multivariate t-distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Multivariate continuous distributions ▷
Multivariate t-distribution ▷
Marginal distributions
Metadata: ID: P525 | shortcut: mvt-marg | author: JoramSoch | date: 2026-01-23, 14:04.
Theorem: Let $X$ be an $n$-dimensional random vector following a multivariate t-distribution:
\[\label{eq:mvt} X \sim t(\mu, \Sigma, \nu) \; .\]Then, the marginal distribution of any $m$-dimensional subset vector $X_s$ is also a multivariate t-distribution
\[\label{eq:mvt-marg} X_s \sim t(\mu_s, \Sigma_s, \nu)\]where $\mu_s$ drops the irrelevant variables (the ones not in the subset, i.e. marginalized out) from the mean vector $\mu$ and $\Sigma_s$ drops the corresponding rows and columns from the covariance matrix $\Sigma$.
Proof: Define an $m \times n$ subset matrix $S$ such that $s_{ij} = 1$, if the $j$-th element in $X_s$ corresponds to the $i$-th element in $X$, and $s_{ij} = 0$ otherwise. Then,
\[\label{eq:xs} X_s = S X\]and we can apply the linear transformation theorem to give
\[\label{eq:mvt-marg-qed} X_s \sim t(S \mu, S \Sigma S^\mathrm{T}, \nu) \; .\]Finally, we see that $S \mu = \mu_s$ and $S \Sigma S^\mathrm{T} = \Sigma_s$.
∎
Sources: - Wikipedia (2026): "Multivariate t-distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2026-01-23; URL: https://en.wikipedia.org/wiki/Multivariate_t-distribution#Marginal_Distributions.
Metadata: ID: P525 | shortcut: mvt-marg | author: JoramSoch | date: 2026-01-23, 14:04.