Proof: Sampling from the matrix-normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Multivariate continuous distributions ▷
Multivariate normal distribution ▷
Drawing samples
Metadata: ID: P501 | shortcut: mvn-samp | author: JoramSoch | date: 2025-05-21, 16:14.
Theorem: Let $X \in \mathbb{R}^n$ be a random vector with all entries independently following a standard normal distribution. Moreover, let $A$ be an $n \times n$ matrix, such that $A A^\mathrm{T} = \Sigma$.
Then, $Y = \mu + A X$ follows a multivariate normal distribution with mean $\mu$ and covariance $\Sigma$:
\[\label{eq:mvn-samp} Y = \mu + A X \sim \mathcal{N}(\mu, \Sigma) \; .\]Proof: If all entries of $X$ are independent and standard normally distributed
\[\label{eq:Xi-dist} X_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, 1) \quad \text{for all} \quad i = 1,\ldots,n \; ,\]this implies a multivariate normal distribution with diagonal covariance matrix:
\[\label{eq:X-dist} X \sim \mathcal{N}\left( 0_n, I_n \right) \; .\]Thus, with the linear transformation theorem for the multivariate normal distribution, it follows that
\[\label{eq:mvn-samp-qed} \begin{split} Y = \mu + A X &\sim \mathcal{N}\left(A 0_n + \mu, A I_n A^\mathrm{T} \right) \\ &\sim \mathcal{N}\left(\mu, A A^\mathrm{T} \right) \\ &\sim \mathcal{N}\left(\mu, \Sigma \right) \; . \end{split}\]Thus, given $X$ defined by \eqref{eq:Xi-dist}, $Y$ defined by \eqref{eq:mvn-samp} is a sample from $\mathcal{N}\left( \mu, \Sigma \right)$.
∎
Sources: - Wikipedia (2025): "Multivariate normal distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2025-05-23; URL: https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Drawing_values_from_the_distribution.
Metadata: ID: P501 | shortcut: mvn-samp | author: JoramSoch | date: 2025-05-21, 16:14.