Proof: Probability density function of the multivariate normal distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Multivariate continuous distributions ▷
Multivariate normal distribution ▷
Probability density function
Metadata: ID: P34 | shortcut: mvn-pdf | author: JoramSoch | date: 2020-01-27, 15:23.
Theorem: Let $X$ be a random vector following a multivariate normal distribution:
\[\label{eq:mvn} X \sim \mathcal{N}(\mu, \Sigma) \; .\]Then, the probability density function of $X$ is
\[\label{eq:mvn-pdf} f_X(x) = \frac{1}{\sqrt{(2 \pi)^n |\Sigma|}} \cdot \exp \left[ -\frac{1}{2} (x-\mu)^\mathrm{T} \Sigma^{-1} (x-\mu) \right] \; .\]Proof: This follows directly from the definition of the multivariate normal distribution.
∎
Sources: Metadata: ID: P34 | shortcut: mvn-pdf | author: JoramSoch | date: 2020-01-27, 15:23.