Proof: Distributions of estimated parameters, fitted signal and residuals in multiple linear regression upon ordinary least squares
Theorem: Assume a linear regression model with independent observations
\[\label{eq:mlr} y = X\beta + \varepsilon, \; \varepsilon_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)\]and consider estimation using ordinary least squares. Then, the estimated parameters, fitted signal and residuals are distributed as
\[\label{eq:mlr-dist} \begin{split} \hat{\beta} &\sim \mathcal{N}\left( \beta, \sigma^2 (X^\mathrm{T} X)^{-1} \right) \\ \hat{y} &\sim \mathcal{N}\left( X \beta, \sigma^2 P \right) \\ \hat{\varepsilon} &\sim \mathcal{N}\left( 0, \sigma^2 (I_n - P) \right) \end{split}\]where $P$ is the projection matrix for ordinary least squares
\[\label{eq:mlr-pmat} P = X (X^\mathrm{T} X)^{-1} X^\mathrm{T} \; .\]Proof: We will use the linear transformation theorem for the multivariate normal distribution:
\[\label{eq:mvn-ltt} x \sim \mathcal{N}(\mu, \Sigma) \quad \Rightarrow \quad y = Ax + b \sim \mathcal{N}(A\mu + b, A \Sigma A^\mathrm{T}) \; .\]The distributional assumption in \eqref{eq:mlr} is equivalent to:
\[\label{eq:mlr-vect} y = X\beta + \varepsilon, \; \varepsilon \sim \mathcal{N}(0, \sigma^2 I_n) \; .\]Applying \eqref{eq:mvn-ltt} to \eqref{eq:mlr-vect}, the measured data are distributed as
\[\label{eq:y-dist} y \sim \mathcal{N}\left( X \beta, \sigma^2 I_n \right) \; .\]1) The parameter estimates from ordinary least sqaures are given by
\[\label{eq:b-est} \hat{\beta} = (X^\mathrm{T} X)^{-1} X^\mathrm{T} y\]and thus, by applying \eqref{eq:mvn-ltt} to \eqref{eq:b-est}, they are distributed as
\[\label{eq:b-est-dist} \begin{split} \hat{\beta} &\sim \mathcal{N}\left( \left[ (X^\mathrm{T} X)^{-1} X^\mathrm{T} \right] X \beta, \, \sigma^2 \left[ (X^\mathrm{T} X)^{-1} X^\mathrm{T} \right] I_n \left[ X (X^\mathrm{T} X)^{-1} \right] \right) \\ &\sim \mathcal{N}\left( \beta, \, \sigma^2 (X^\mathrm{T} X)^{-1} \right) \; . \end{split}\]2) The fitted signal in multiple linear regression is given by
\[\label{eq:y-est} \hat{y} = X \hat{\beta} = X (X^\mathrm{T} X)^{-1} X^\mathrm{T} y = P y\]and thus, by applying \eqref{eq:mvn-ltt} to \eqref{eq:y-est}, they are distributed as
\[\label{eq:y-est-dist} \begin{split} \hat{y} &\sim \mathcal{N}\left( X \beta, \, \sigma^2 X (X^\mathrm{T} X)^{-1} X^\mathrm{T} \right) \\ &\sim \mathcal{N}\left( X \beta, \, \sigma^2 P \right) \; . \end{split}\]3) The residuals of the linear regression model are given by
\[\label{eq:e-est} \hat{\varepsilon} = y - X \hat{\beta} = \left( I_n - X (X^\mathrm{T} X)^{-1} X^\mathrm{T} \right) y = \left( I_n - P \right) y\]and thus, by applying \eqref{eq:mvn-ltt} to \eqref{eq:e-est}, they are distributed as
\[\label{eq:e-est-dist-s1} \begin{split} \hat{\varepsilon} &\sim \mathcal{N}\left( \left[ I_n - X (X^\mathrm{T} X)^{-1} X^\mathrm{T} \right] X \beta, \, \sigma^2 \left[ I_n - P \right] I_n \left[ I_n - P \right]^\mathrm{T} \right) \\ &\sim \mathcal{N}\left( X \beta - X \beta, \, \sigma^2 \left[ I_n - P \right] \left[ I_n - P \right]^\mathrm{T} \right) \; . \end{split}\]Because the residual-forming matrix is symmetric and idempotent, this becomes:
\[\label{eq:e-est-dist-s2} \hat{\varepsilon} \sim \mathcal{N}\left( 0, \sigma^2 (I_n - P) \right) \; .\]- Koch, Karl-Rudolf (2007): "Linear Model"; in: Introduction to Bayesian Statistics, Springer, Berlin/Heidelberg, 2007, ch. 4, eqs. 4.2, 4.30; URL: https://www.springer.com/de/book/9783540727231; DOI: 10.1007/978-3-540-72726-2.
- Penny, William (2006): "Multiple Regression"; in: Mathematics for Brain Imaging, ch. 1.5, pp. 39-41, eqs. 1.106-1.110; URL: https://ueapsylabs.co.uk/sites/wpenny/mbi/mbi_course.pdf.
- Ostwald, Dirk (2023): "Modellformulierung"; in: Allgemeines Lineares Modell, Einheit (5), Folie 14; URL: https://www.ipsy.ovgu.de/ipsy_media/Methodenlehre+I/Sommersemester+2023/Allgemeines+Lineares+Modell/5_Modellformulierung.pdf.
- Ostwald, Dirk (2023): "Parameterschätzung"; in: Allgemeines Lineares Modell, Einheit (6), Folien 10-12; URL: https://www.ipsy.ovgu.de/ipsy_media/Methodenlehre+I/Sommersemester+2023/Allgemeines+Lineares+Modell/6_Parametersch%C3%A4tzung.pdf.
Metadata: ID: P400 | shortcut: mlr-olsdist | author: JoramSoch | date: 2022-12-23, 16:36.