Index: The Book of Statistical ProofsStatistical ModelsUnivariate normal dataMultiple linear regression ▷ F-test for multiple regressors

Theorem: Consider a linear regression model

\[\label{eq:mlr} y = X\beta + \varepsilon, \; \varepsilon \sim \mathcal{N}(0, \sigma^2 V)\]

the design matrix and regression coefficients of which are partitioned as

\[\label{eq:mlr-X-b} \begin{split} X = \left[ \begin{matrix} X_0 & X_1 \end{matrix} \right] \in \mathbb{R}^{n \times p} \quad &\text{where} \quad X_0 \in \mathbb{R}^{n \times p_0} \quad \text{and} \quad X_1 \in \mathbb{R}^{n \times p_1} \\ \beta = \left[ \begin{matrix} \beta_0 \\ \beta_1 \end{matrix} \right] \in \mathbb{R}^{p \times 1} \quad &\text{where} \quad \beta_0 \in \mathbb{R}^{p_0 \times 1} \quad \text{and} \quad \beta_1 \in \mathbb{R}^{p_1 \times 1} \end{split}\]

with $p = p_0 + p_1$. Then, the test statistic

\[\label{eq:mlr-f-omnibus} F = \frac{(\hat{\varepsilon}_0^\mathrm{T} V^{-1} \hat{\varepsilon}_0 - \hat{\varepsilon}^\mathrm{T} V^{-1} \hat{\varepsilon})/p_1}{\hat{\varepsilon}^\mathrm{T} V^{-1} \hat{\varepsilon}/(n-p)}\]

follows an F-distribution

\[\label{eq:mlr-f-omnibus-dist} F \sim \mathrm{F}(p_1, n-p)\]

under the null hypothesis that all regression coefficients $\beta_1$ are zero:

\[\label{eq:mlr-f-omnibus-h0} H_0: \; \beta_1 = 0_{p_1} \quad \Leftrightarrow \quad \beta_{1j} = 0 \quad \text{for all} \quad j=1,\ldots,p_1 \; .\]

In \eqref{eq:mlr-f-omnibus}, $\hat{\varepsilon}$ and $\hat{\varepsilon}_0$ are the residual vectors when using either the full design matrix $X$ or the reduced design matrix $X_0$:

\[\label{eq:mlr-e-e0} \begin{split} \hat{\varepsilon} = y - X \hat{\beta} \quad &\text{with} \quad \hat{\beta} = (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y \\ \hat{\varepsilon}_0 = y - X_0 \hat{\beta}_0 \quad &\text{with} \quad \hat{\beta}_0 = (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y \; . \end{split}\]

Proof: This is a special case of the contrast-based F-test for multiple linear regression based on the F-statistic

\[\label{eq:mlr-f} F = \hat{\beta}^\mathrm{T} C \left( \hat{\sigma}^2 C^\mathrm{T} (X^\mathrm{T} V^{-1} X)^{-1} C \right)^{-1} C^\mathrm{T} \hat{\beta} / q\]

which follows an F-distribution under the null hypothesis that the product of the contrast matrix $C \in \mathbb{R}^{p \times q}$ and the regression coefficients equals zero:

\[\label{eq:mlr-f-dist-h0} F \sim \mathrm{F}(q, n-p), \quad \text{if} \quad C^\mathrm{T} \beta = 0_q = \left[ \begin{matrix} 0 \\ \vdots \\ 0 \end{matrix} \right] \; .\]

In \eqref{eq:mlr-f}, $\hat{\sigma}^2$ is an estimate of the noise variance calculated as the weighted residual sum of squares, divided by $n-p$:

\[\label{eq:mlr-sig2-est} \hat{\sigma}^2 = \frac{1}{n-p} (y-X\hat{\beta})^\mathrm{T} V^{-1} (y-X\hat{\beta}) \; .\]

In the present case, in order to compare the full model specified by $X$ against the reduced model specified by $X_0$, we have to define the contrast matrix as a vertical concatenation of a zero matrix on the first $p_0$ components and an identity matrix on the last $p_1$ components of $\beta$,

\[\label{eq:mlr-f-omnibus-C} \begin{split} C_1 = \left[ \begin{matrix} 0_{p_0,p_1} \\ I_{p_1} \end{matrix} \right] \in \mathbb{R}^{p \times p_1} \; , \end{split}\]

i.e. specify an omnibus F-contrast that tests the alternative hypothesis that any of the coefficients $\beta_1$ associated with the regressors $X_1$ is different from zero against the null hypothesis that all those coefficients are zero:

\[\label{eq:mlr-f-omnibus-h0-C} \begin{split} &H_0: \; C_1^\mathrm{T} \beta = \left[ \begin{matrix} 0_{p_0,p_1} \\ I_{p_1} \end{matrix} \right]^\mathrm{T} \left[ \begin{matrix} \beta_0 \\ \beta_1 \end{matrix} \right] = \beta_1 = 0_{p_1} \quad \Leftrightarrow \quad \beta_{1j} = 0 \quad \text{for all} \quad j=1,\ldots,p_1 \\ \Rightarrow \; &H_1 \Leftrightarrow \neg H_0: \; C_1^\mathrm{T} \beta = \beta_1 \neq 0_{p_1} \quad \Leftrightarrow \quad \beta_{1j} \neq 0 \quad \text{for at least one} \quad j=1,\ldots,p_1 \; . \end{split}\]

Thus, plugging $C = C_1$ and $q = p_1$ into \eqref{eq:mlr-f} and noting that $\hat{\sigma}^2$ from \eqref{eq:mlr-sig2-est} is a scalar, we obtain:

\[\label{eq:mlr-f-s1} \begin{split} F &= \hat{\beta}^\mathrm{T} C_1 \left( \hat{\sigma}^2 C_1^\mathrm{T} (X^\mathrm{T} V^{-1} X)^{-1} C_1 \right)^{-1} C_1^\mathrm{T} \hat{\beta} / p_1 \\ &\overset{\eqref{eq:mlr-sig2-est}}{=} \frac{\hat{\beta}^\mathrm{T} C_1 \left( C_1^\mathrm{T} (X^\mathrm{T} V^{-1} X)^{-1} C_1 \right)^{-1} C_1^\mathrm{T} \hat{\beta} / p_1}{(y-X\hat{\beta})^\mathrm{T} V^{-1} (y-X\hat{\beta}) / (n-p)} \; . \end{split}\]

Here, we take note of the fact that the denominator in \eqref{eq:mlr-f-s1} is already equal to the denominator in \eqref{eq:mlr-f-omnibus}:

\[\label{eq:mlr-f-den} (y-X\hat{\beta})^\mathrm{T} V^{-1} (y-X\hat{\beta}) / (n-p) \overset{\eqref{eq:mlr-e-e0}}{=} \hat{\varepsilon}^\mathrm{T} V^{-1} \hat{\varepsilon}/(n-p) \; .\]

Therefore, what remains to be shown is that the numerator in \eqref{eq:mlr-f-s1} is equal to the numerator in \eqref{eq:mlr-f-omnibus}:

\[\label{eq:mlr-f-num} \hat{\beta}^\mathrm{T} C_1 \left( C_1^\mathrm{T} (X^\mathrm{T} V^{-1} X)^{-1} C_1 \right)^{-1} C_1^\mathrm{T} \hat{\beta} / p_1 = (\hat{\varepsilon}_0^\mathrm{T} V^{-1} \hat{\varepsilon}_0 - \hat{\varepsilon}^\mathrm{T} V^{-1} \hat{\varepsilon})/p_1 \; .\]

To do this, we start with the inner-most matrix:

\[\label{eq:mlr-f-s2} \begin{split} X^\mathrm{T} V^{-1} X &\overset{\eqref{eq:mlr-X-b}}{=} \left[ \begin{matrix} X_0 & X_1 \end{matrix} \right]^\mathrm{T} V^{-1} \left[ \begin{matrix} X_0 & X_1 \end{matrix} \right] \\ &= \left[ \begin{matrix} X_0^\mathrm{T} \\ X_1^\mathrm{T} \end{matrix} \right] V^{-1} \left[ \begin{matrix} X_0 & X_1 \end{matrix} \right] \\ &= \left[ \begin{matrix} X_0^\mathrm{T} V^{-1} X_0 & X_0^\mathrm{T} V^{-1} X_1 \\ X_1^\mathrm{T} V^{-1} X_0 & X_1^\mathrm{T} V^{-1} X_1 \end{matrix} \right] \; . \end{split}\]

The inverse of a block matrix is:

\[\label{eq:block-inv} \begin{bmatrix} A & B \\ C & D \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(D-CA^{-1}B)^{-1}CA^{-1} & -A^{-1}B(D-CA^{-1}B)^{-1} \\ -(D-CA^{-1}B)^{-1}CA^{-1} & (D-CA^{-1}B)^{-1} \end{bmatrix} \; .\]

Note that, with the contrast matrix $C_1$, we only extract the lower-right part of the inverse block matrix, so that we have:

\[\label{eq:mlr-f-s3} \begin{split} \left( C_1^\mathrm{T} (X^\mathrm{T} V^{-1} X)^{-1} C_1 \right)^{-1} &\overset{\eqref{eq:mlr-f-omnibus-C}}{=} \left( \left[ \begin{matrix} 0_{p_1,p_0} & I_{p_1} \end{matrix} \right] (X^\mathrm{T} V^{-1} X)^{-1} \left[ \begin{matrix} 0_{p_0,p_1} \\ I_{p_1} \end{matrix} \right] \right)^{-1} \\ &\overset{\eqref{eq:block-inv}}{=} \left( \left( X_1^\mathrm{T} V^{-1} X_1 - X_1^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} X_1 \right)^{-1} \right)^{-1} \\ &= X_1^\mathrm{T} V^{-1} X_1 - X_1^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} X_1 \; . \end{split}\]

We call this $p_1 \times p_1$ matrix $E$ and note that it can be written as

\[\label{eq:mlr-f-E} \begin{split} E &\overset{\eqref{eq:mlr-f-s3}}{=} X_1^\mathrm{T} \left( V^{-1} - V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} \right) X_1 \\ &= X_1^\mathrm{T} \left( V^{-1} - F \right) X_1 \end{split}\]

where the $n \times n$ matrix $F$ is given as follows:

\[\label{eq:mlr-f-F} F = V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} \; .\]

Let $\hat{\beta}_{0(X)}$ denote the first $p_0$ entries of $\hat{\beta}$, i.e. estimates of the coefficients belonging to $X_0$, but estimated with $X$ (as opposed to $\hat{\beta}_0$ estimated with $X_0$ given by \eqref{eq:mlr-e-e0}):

\[\label{eq:hat-b-b0X-b1} \hat{\beta} = \left[ \begin{matrix} \hat{\beta}_{0(X)} \\ \hat{\beta}_1 \end{matrix} \right] \; .\]

Then, it obviously holds that

\[\label{eq:mlr-f-s4} \begin{split} X \hat{\beta} &\overset{\eqref{eq:hat-b-b0X-b1}}{=} \left[ \begin{matrix} X_0 & X_1 \end{matrix} \right] \left[ \begin{matrix} \hat{\beta}_{0(X)} \\ \hat{\beta}_1 \end{matrix} \right] \\ &= X_0 \hat{\beta}_{0(X)} + X_1 \hat{\beta}_1 \\ &\Leftrightarrow \\ X_1 \hat{\beta}_1 &= X \hat{\beta} - X_0 \hat{\beta}_{0(X)} \; . \end{split}\]

Next, we focus on $C_1^\mathrm{T} \hat{\beta}$ which simply extracts $\hat{\beta}_1$:

\[\label{eq:mlr-f-s5} \begin{split} C_1^\mathrm{T} \hat{\beta} &\overset{\eqref{eq:hat-b-b0X-b1}}{=} \left[ \begin{matrix} 0_{p_1,p_0} & I_{p_1} \end{matrix} \right] \left[ \begin{matrix} \hat{\beta}_{0(X)} \\ \hat{\beta}_1 \end{matrix} \right] \\ &= \hat{\beta}_1 \; . \end{split}\]

With these identities in mind, we can get back to our main quantity of interest from \eqref{eq:mlr-f-num}:

\[\label{eq:mlr-f-s6} \begin{split} &\quad\quad \hat{\beta}^\mathrm{T} C_1 \left( C_1^\mathrm{T} (X^\mathrm{T} V^{-1} X)^{-1} C_1 \right)^{-1} C_1^\mathrm{T} \hat{\beta} \\ &\overset{\eqref{eq:mlr-f-s5}}{=} \hat{\beta}_1^\mathrm{T} \; E \; \hat{\beta}_1 \\ &\overset{\eqref{eq:mlr-f-E}}{=} \hat{\beta}_1^\mathrm{T} X_1^\mathrm{T} \left( V^{-1} - V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} \right) X_1 \hat{\beta}_1 \\ &\overset{\eqref{eq:mlr-f-s4}}{=} \left( \hat{\beta}^\mathrm{T} X^\mathrm{T} - \hat{\beta}_{0(X)}^\mathrm{T} X_0^\mathrm{T} \right) \left( V^{-1} - V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} \right) \left( X \hat{\beta} - X_0 \hat{\beta}_{0(X)} \right) \\ &\overset{\eqref{eq:mlr-f-F}}{=} \left( \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} - \hat{\beta}^\mathrm{T} X^\mathrm{T} F - \hat{\beta}_{0(X)}^\mathrm{T} X_0^\mathrm{T} V^{-1} + \hat{\beta}_{0(X)}^\mathrm{T} X_0^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} \right) \left( X \hat{\beta} - X_0 \hat{\beta}_{0(X)} \right) \\ &= \left( \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} - \hat{\beta}^\mathrm{T} X^\mathrm{T} F - \hat{\beta}_{0(X)}^\mathrm{T} X_0^\mathrm{T} V^{-1} + \hat{\beta}_{0(X)}^\mathrm{T} X_0^\mathrm{T} V^{-1} \right) \left( X \hat{\beta} - X_0 \hat{\beta}_{0(X)} \right) \\ &= \left( \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} - \hat{\beta}^\mathrm{T} X^\mathrm{T} F \right) \left( X \hat{\beta} - X_0 \hat{\beta}_{0(X)} \right) \\ &\overset{\eqref{eq:mlr-f-F}}{=} \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X_0 \hat{\beta}_{0(X)} - \hat{\beta}^\mathrm{T} X^\mathrm{T} F X \hat{\beta} + \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} X_0 \hat{\beta}_{0(X)} \\ &= \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X_0 \hat{\beta}_{0(X)} - \hat{\beta}^\mathrm{T} X^\mathrm{T} F X \hat{\beta} + \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X_0 \hat{\beta}_{0(X)} \\ &= \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - \hat{\beta}^\mathrm{T} X^\mathrm{T} F X \hat{\beta} \\ &\overset{\eqref{eq:mlr-f-F}}{=} \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} X \hat{\beta} \; . \end{split}\]

Let the residual vector of the full model be defined as given by \eqref{eq:mlr-e-e0}

\[\label{eq:hat-e} \hat{\varepsilon} = y - X \hat{\beta} \quad \Leftrightarrow \quad y = X \hat{\beta} + \hat{\varepsilon}\]

and consider the term $X^\mathrm{T} V^{-1} \hat{\varepsilon}$. Using the residual-forming matrix expression of the residual vector, we can show that this matrix product is zero:

\[\label{eq:mlr-f-s7a} \begin{split} X^\mathrm{T} V^{-1} \hat{\varepsilon} &= X^\mathrm{T} V^{-1} \left( I_n - X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} \right) y \\ &= X^\mathrm{T} V^{-1} y - X^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y \\ &= X^\mathrm{T} V^{-1} y - X^\mathrm{T} V^{-1} y \\ &= 0_p \; . \end{split}\]

From this, it follows that the product $X_0^\mathrm{T} V^{-1} \hat{\varepsilon}$ is also zero:

\[\label{eq:mlr-f-s7b} \begin{split} X^\mathrm{T} V^{-1} \hat{\varepsilon} &= 0_p \\ \left[ \begin{matrix} X_0^\mathrm{T} \\ X_1^\mathrm{T} \end{matrix} \right] V^{-1} \hat{\varepsilon} &= 0_p \\ \left[ \begin{matrix} X_0^\mathrm{T} V^{-1} \hat{\varepsilon} \\ X_1^\mathrm{T} V^{-1} \hat{\varepsilon} \end{matrix} \right] &= \left[ \begin{matrix} 0_{p_0} \\ 0_{p_1} \end{matrix} \right] \\ &\Leftrightarrow \\ X_0^\mathrm{T} V^{-1} \hat{\varepsilon} &= 0_{p_0} \; . \end{split}\]

Thus, any term containing $X_0^\mathrm{T} V^{-1} \hat{\varepsilon} = 0_{p_0}$ can be added to a sum without changing the value of this sum. Continuing from above, we therefore write:

\[\label{eq:mlr-f-s8} \begin{split} &\quad\quad \hat{\beta}^\mathrm{T} C_1 \left( C_1^\mathrm{T} (X^\mathrm{T} V^{-1} X)^{-1} C_1 \right)^{-1} C_1^\mathrm{T} \hat{\beta} \\ &\overset{\eqref{eq:mlr-f-s6}}{=} \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} X \hat{\beta} \\ &\overset{\eqref{eq:mlr-f-s7b}}{=} \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} X \hat{\beta} \\ &+ 2 \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} \hat{\varepsilon} + \hat{\varepsilon}^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} \hat{\varepsilon} \\ &= \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - \left( X \hat{\beta} + \hat{\varepsilon} \right)^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} \left( X \hat{\beta} + \hat{\varepsilon} \right) \\ &\overset{\eqref{eq:hat-e}}{=} \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - y^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y \; . \end{split}\]

In the next transformations, we will make use of the weighted least squares parameter estimates

\[\label{eq:mlr-b-b0} \begin{split} \hat{\beta} &= (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y \\ \hat{\beta}_0 &= (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y \end{split}\]

and the fact that matrices and their inverses cancel out:

\[\label{eq:mlr-inv} \begin{split} X^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} = (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} X &= I_p \\ X_0^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} = (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} X_0 &= I_{p_0} \; . \end{split}\]

Continuing from above, we have:

\[\label{eq:mlr-f-s9} \begin{split} &\quad\quad \hat{\beta}^\mathrm{T} C_1 \left( C_1^\mathrm{T} (X^\mathrm{T} V^{-1} X)^{-1} C_1 \right)^{-1} C_1^\mathrm{T} \hat{\beta} \\ &\overset{\eqref{eq:mlr-f-s8}}{=} \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} - y^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y \\ &\overset{\eqref{eq:mlr-b-b0}}{=} y^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y - y^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y \\ &= y^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y - y^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y \\ &= y^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y - 2 y^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y \\ &- y^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y + 2 y^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y \\ &\overset{\eqref{eq:mlr-inv}}{=} y^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y - 2 y^\mathrm{T} V^{-1} X_0 (X_0^\mathrm{T} V^{-1} X_0)^{-1} X_0^\mathrm{T} V^{-1} y \\ &- y^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y + 2 y^\mathrm{T} V^{-1} X (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} y \\ &\overset{\eqref{eq:mlr-b-b0}}{=} \hat{\beta}_0^\mathrm{T} X_0^\mathrm{T} V^{-1} X_0 \hat{\beta}_0 - 2 y^\mathrm{T} V^{-1} X_0 \hat{\beta}_0 - \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} + 2 y^\mathrm{T} V^{-1} X \hat{\beta} \\ &= y^\mathrm{T} V^{-1} y - 2 y^\mathrm{T} V^{-1} X_0 \hat{\beta}_0 + \hat{\beta}_0^\mathrm{T} X_0^\mathrm{T} V^{-1} X_0 \hat{\beta}_0 - y^\mathrm{T} V^{-1} y + 2 y^\mathrm{T} V^{-1} X \hat{\beta} - \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} \\ &= \left( y^\mathrm{T} V^{-1} y - 2 y^\mathrm{T} V^{-1} X_0 \hat{\beta}_0 + \hat{\beta}_0^\mathrm{T} X_0^\mathrm{T} V^{-1} X_0 \hat{\beta}_0 \right) - \left( y^\mathrm{T} V^{-1} y - 2 y^\mathrm{T} V^{-1} X \hat{\beta} + \hat{\beta}^\mathrm{T} X^\mathrm{T} V^{-1} X \hat{\beta} \right) \\ &= (y - X_0 \hat{\beta}_0)^\mathrm{T} V^{-1} (y - X_0 \hat{\beta}_0) - (y - X \hat{\beta})^\mathrm{T} V^{-1} (y - X \hat{\beta}) \\ &\overset{\eqref{eq:mlr-e-e0}}{=} \hat{\varepsilon}_0^\mathrm{T} V^{-1} \hat{\varepsilon}_0 - \hat{\varepsilon}^\mathrm{T} V^{-1} \hat{\varepsilon} \; . \end{split}\]

With that, it is shown that \eqref{eq:mlr-f-num} is true which, together with \eqref{eq:mlr-f-den}, finally demonstrates that the F-value in \eqref{eq:mlr-f-s1} is equal to the test statistic given by \eqref{eq:mlr-f-omnibus}. This completes the proof.

Sources:

Metadata: ID: P454 | shortcut: mlr-fomnibus | author: JoramSoch | date: 2024-05-31, 14:35.