Index: The Book of Statistical ProofsStatistical Models ▷ Categorical data ▷ Logistic regression ▷ Log-odds and probability

Theorem: Assume a logistic regression model

$\label{eq:logreg} l_i = x_i \beta + \varepsilon_i, \; i = 1,\ldots,n$

where $x_i$ are the predictors corresponding to the $i$-th observation $y_i$ and $l_i$ are the log-odds that $y_i = 1$.

Then, the probability that $y_i = 1$ is given by

$\label{eq:prob} \mathrm{Pr}(y_i = 1) = \frac{1}{1 + b^{-(x_i \beta + \varepsilon_i)}}$

where $b$ is the base used to form the log-odds $l_i$.

Proof: Let us denote $\mathrm{Pr}(y_i = 1)$ as $p_i$. Then, the log-odds are

$\label{eq:lodds} l_i = \log_b \frac{p_i}{1-p_i}$

and using \eqref{eq:logreg}, we have

$\label{eq:prob-qed} \begin{split} \log_b \frac{p_i}{1-p_i} &= x_i \beta + \varepsilon_i \\ \frac{p_i}{1-p_i} &= b^{x_i \beta + \varepsilon_i} \\ p_i &= \left( b^{x_i \beta + \varepsilon_i} \right) (1-p_i) \\ p_i \left( 1 + b^{x_i \beta + \varepsilon_i} \right) &= b^{x_i \beta + \varepsilon_i} \\ p_i &= \frac{b^{x_i \beta + \varepsilon_i}}{1 + b^{x_i \beta + \varepsilon_i}} \\ p_i &= \frac{b^{x_i \beta + \varepsilon_i}}{b^{x_i \beta + \varepsilon_i} \left( 1 + b^{-(x_i \beta + \varepsilon_i)} \right)} \\ p_i &= \frac{1}{1 + b^{-(x_i \beta + \varepsilon_i)}} \end{split}$

which proves the identity given by \eqref{eq:prob}.

Sources:

Metadata: ID: P72 | shortcut: logreg-lonp | author: JoramSoch | date: 2020-03-03, 12:01.