Proof: Derivation of the log family evidence
Index:
The Book of Statistical Proofs ▷
Model Selection ▷
Bayesian model selection ▷
Family evidence ▷
Derivation of the log family evidence
Metadata: ID: P132 | shortcut: lfe-der | author: JoramSoch | date: 2020-07-13, 22:58.
Theorem: Let $f$ be a family of $M$ generative models $m_1, \ldots, m_M$ with model evidences $p(y \vert m_1), \ldots, p(y \vert m_M)$. Then, the log family evidence
\[\label{eq:LFE-term} \mathrm{LFE}(f) = \log p(y|f)\]can be expressed as
\[\label{eq:LFE-marg} \mathrm{LFE}(f) = \log \sum_{i=1}^M p(y|m_i) \, p(m_i|f)\]where $p(m_i \vert f)$ are the within-family prior model probabilities.
Proof: We will assume “prior addivivity”
\[\label{eq:fam-prior} p(f) = \sum_{i=1}^M p(m_i)\]and “posterior additivity” for family probabilities:
\[\label{eq:fam-post} p(f|y) = \sum_{i=1}^M p(m_i|y)\]Bayes’ theorem for the family evidence gives
\[\label{eq:fe-bayes-th} p(y|f) = \frac{p(f|y) \, p(y)}{p(f)} \; .\]Applying \eqref{eq:fam-prior} and \eqref{eq:fam-post}, we have
\[\label{eq:fe-me} p(y|f) = \frac{\sum_{i=1}^M p(m_i|y) \, p(y)}{\sum_{i=1}^M p(m_i)} \; .\]Bayes’ theorem for the model evidence gives
\[\label{eq:me-bayes-th} p(y|m_i) = \frac{p(m_i|y) \, p(y)}{p(m_i)}\]which can be rearranged into
\[\label{eq:me-bayes-th-dev} p(m_i|y) \, p(y) = p(y|m_i) \, p(m_i) \; .\]Plugging \eqref{eq:me-bayes-th-dev} into \eqref{eq:fe-me}, we have
\[\label{eq:fe-marg-qed} \begin{split} p(y|f) &= \frac{\sum_{i=1}^M p(y|m_i) \, p(m_i)}{\sum_{i=1}^M p(m_i)} \\ &= \sum_{i=1}^M p(y|m_i) \cdot \frac{p(m_i)}{\sum_{i=1}^M p(m_i)} \\ &= \sum_{i=1}^M p(y|m_i) \cdot \frac{p(m_i,f)}{p(f)} \\ &= \sum_{i=1}^M p(y|m_i) \cdot p(m_i|f) \; . \end{split}\]Equation \eqref{eq:LFE-marg} follows by logarithmizing both sides of \eqref{eq:fe-marg-qed}.
∎
Sources: Metadata: ID: P132 | shortcut: lfe-der | author: JoramSoch | date: 2020-07-13, 22:58.