Proof: Non-negativity of the Kullback-Leibler divergence
Index:
The Book of Statistical Proofs ▷
General Theorems ▷
Information theory ▷
Kullback-Leibler divergence ▷
Non-negativity
Metadata: ID: P515 | shortcut: kl-nonneg3 | author: JoramSoch | date: 2025-09-25, 09:46.
Theorem: The Kullback-Leibler divergence is always non-negative
\[\label{eq:KL-nonneg} \mathrm{KL}[P||Q] \geq 0\]with $\mathrm{KL}[P \vert \vert Q] = 0$, if and only if $P = Q$.
Proof: The continuous Kullback-Leibler divergence is defined as
\[\label{eq:KL-cont} \mathrm{KL}[P||Q] = \int_{\mathcal{X}} p(x) \cdot \log \frac{p(x)}{q(x)} \, \mathrm{d}x \; .\]For a continuous random variable $X$ with possible values $x \in \mathcal{X}$, Jensen’s inequality implies that
\[\label{eq:jens-ineq-cont} \int_{\mathcal{X}} q(x) g(x) \, \mathrm{d}x \geq g\left( \int_{\mathcal{X}} q(x) x \, \mathrm{d}x \right)\]where $g(x)$ is a convex function and $q(x)$ is the probability density function of $X$. The negative KL divergence is equal to
\[\label{eq:KL-nonneg-s1} \begin{split} -\mathrm{KL}[P||Q] &= -\int_{\mathcal{X}} p(x) \cdot \log \frac{p(x)}{q(x)} \, \mathrm{d}x \\ &= \int_{\mathcal{X}} p(x) \cdot \log \frac{q(x)}{p(x)} \, \mathrm{d}x \; . \end{split}\]Applying \eqref{eq:jens-ineq-cont} to \eqref{eq:KL-nonneg-s1}, we have
\[\label{eq:KL-nonneg-s2} \begin{split} -\mathrm{KL}[P||Q] &\leq \log \int_{\mathcal{X}} p(x) \cdot \frac{q(x)}{p(x)} \, \mathrm{d}x \\ &= \log \int_{\mathcal{X}} q(x) \, \mathrm{d}x \\ &= \log 1 = 0 \end{split}\]where the inequality sign has been reversed, because $\log(x)$ is a concave function, and we have used the fact that a PDF integrates to one. From \eqref{eq:KL-nonneg-s2}, we get
\[\label{eq:KL-nonneg-s3} \begin{split} -\mathrm{KL}[P||Q] &\leq 0 \\ \mathrm{KL}[P||Q] &\geq 0 \; . \end{split}\]∎
Sources: - Ostwald et al. (2014): "A tutorial on variational Bayes for latent linear stochastic time-series models"; in: Journal of Mathematical Psychology, vol. 60, pp. 1-19, App. A; URL: https://www.sciencedirect.com/science/article/pii/S0022249614000352; DOI: 10.1016/j.jmp.2014.04.0.
Metadata: ID: P515 | shortcut: kl-nonneg3 | author: JoramSoch | date: 2025-09-25, 09:46.