Proof: Equivalence of log-likelihood ratios for regular and inverse general linear model
Theorem: Consider two general linear models
\[\label{eq:glms} \begin{split} m_1^{(Y)}: \; & Y = X B + E_1, \; E_1 \sim \mathcal{MN}(0, I_n, \Sigma_1^{(Y)}) \\ m_0^{(Y)}: \; & Y = E_0, \; E_0 \sim \mathcal{MN}(0, I_n, \Sigma_0^{(Y)}) \end{split}\]and two inverse general linear models
\[\label{eq:iglms} \begin{split} m_1^{(X)}: \; & X = Y W + N_1, \; N_1 \sim \mathcal{MN}(0, I_n, \Sigma_1^{(X)}) \\ m_0^{(X)}: \; & X = N_0, \; N_0 \sim \mathcal{MN}(0, I_n, \Sigma_0^{(X)}) \end{split}\]where $Y \in \mathbb{R}^{n \times v}$ and $X \in \mathbb{R}^{n \times p}$ are data matrices, such that $n > v$ and $n > p$. Then, the log-likelihood ratio comparing the forward models is equivalent to the log-likelihood ratio comparing the backward models:
\[\label{eq:iglm-llreq} \ln \Lambda_{10}^{(Y)} = \ln \Lambda_{10}^{(X)} \; .\]Proof: The maximum likelihood estimates for the general linear models are
\[\label{eq:glms-mle} \begin{split} \hat{\Sigma}_1^{(Y)} &= \frac{1}{n} (Y - X\hat{B})^\mathrm{T} (Y - X\hat{B}) \quad \text{with} \quad \hat{B} = (X^\mathrm{T} X)^{-1} X^\mathrm{T} Y \quad \text{and} \quad \\ \hat{\Sigma}_0^{(Y)} &= \frac{1}{n} Y^\mathrm{T} Y \end{split}\]as well as
\[\label{eq:iglms-mle} \begin{split} \hat{\Sigma}_1^{(X)} &= \frac{1}{n} (X - Y\hat{W})^\mathrm{T} (X - Y\hat{W}) \quad \text{with} \quad \hat{W} = (Y^\mathrm{T} Y)^{-1} Y^\mathrm{T} X \quad \text{and} \quad \\ \hat{\Sigma}_0^{(X)} &= \frac{1}{n} X^\mathrm{T} X \; . \end{split}\]The likelihood ratio for two general linear models $m_1$ and $m_2$ is:
\[\label{eq:glm-llr} \begin{split} \ln \Lambda_{12} &= - \frac{n}{2} \ln \frac{|\hat{\Sigma}_1|}{|\hat{\Sigma}_2|} \\ &= - \frac{n}{2} \ln \left( |\hat{\Sigma}_2^{-1}| |\hat{\Sigma}_1| \right) \\ &= - \frac{n}{2} \ln |\hat{\Sigma}_2^{-1} \hat{\Sigma}_1| \; . \end{split}\]Thus, with \eqref{eq:glms-mle}, the log-likelihood ratio of $m_1^{(Y)}$ vs. $m_0^{(Y)}$ is given as
\[\label{eq:glms-llr} \begin{split} \ln \Lambda_Y = \ln \Lambda_{10}^{(Y)} &\overset{\eqref{eq:glm-llr}}{=} - \frac{n}{2} \ln \left| \left( \hat{\Sigma}_0^{(Y)} \right)^{-1} \hat{\Sigma}_1^{(Y)} \right| \\ &\overset{\eqref{eq:glms-mle}}{=} - \frac{n}{2} \ln \left| \left( \frac{1}{n} Y^\mathrm{T} Y \right)^{-1} \frac{1}{n} (Y - X \hat{B})^\mathrm{T} (Y - X \hat{B}) \right| \\ &= - \frac{n}{2} \ln \left| \left( Y^\mathrm{T} Y \right)^{-1} \left( Y^\mathrm{T} Y - 2 Y^\mathrm{T} X \hat{B} + \hat{B}^\mathrm{T} X^\mathrm{T} X \hat{B} \right) \right| \\ &= - \frac{n}{2} \ln \left| \left( (Y^\mathrm{T} Y)^{-1} Y^\mathrm{T} Y - 2 (Y^\mathrm{T} Y)^{-1} Y^\mathrm{T} X \hat{B} + (Y^\mathrm{T} Y)^{-1} \hat{B}^\mathrm{T} X^\mathrm{T} X \hat{B} \right) \right| \\ &\overset{\eqref{eq:glms-mle}}{=} - \frac{n}{2} \ln \left| I_v - 2 \hat{W} \hat{B} + (Y^\mathrm{T} Y)^{-1} Y^\mathrm{T} X (X^\mathrm{T} X)^{-1} X^\mathrm{T} X (X^\mathrm{T} X)^{-1} X^\mathrm{T} Y \right| \\ &= - \frac{n}{2} \ln \left| I_v - 2 \hat{W} \hat{B} + (Y^\mathrm{T} Y)^{-1} Y^\mathrm{T} X (X^\mathrm{T} X)^{-1} X^\mathrm{T} Y \right| \\ &= - \frac{n}{2} \ln \left| I_v - 2 \hat{W} \hat{B} + \hat{W} \hat{B} \right| \\ &= - \frac{n}{2} \ln \left| I_v - \hat{W} \hat{B} \right| \; . \end{split}\]Similarly, with \eqref{eq:iglms-mle}, the log-likelihood ratio of $m_1^{(X)}$ vs. $m_0^{(X)}$ becomes
\[\label{eq:iglms-llr} \begin{split} \ln \Lambda_X = \ln \Lambda_{10}^{(X)} &\overset{\eqref{eq:glm-llr}}{=} - \frac{n}{2} \ln \left| \left( \hat{\Sigma}_0^{(X)} \right)^{-1} \hat{\Sigma}_1^{(X)} \right| \\ &\overset{\eqref{eq:iglms-mle}}{=} - \frac{n}{2} \ln \left| \left( \frac{1}{n} X^\mathrm{T} X \right)^{-1} \frac{1}{n} (X - Y \hat{W})^\mathrm{T} (X - Y \hat{W}) \right| \\ &= - \frac{n}{2} \ln \left| \left( X^\mathrm{T} X \right)^{-1} \left( X^\mathrm{T} X - 2 X^\mathrm{T} Y \hat{W} + \hat{W}^\mathrm{T} Y^\mathrm{T} Y \hat{W} \right) \right| \\ &= - \frac{n}{2} \ln \left| \left( (X^\mathrm{T} X)^{-1} X^\mathrm{T} X - 2 (X^\mathrm{T} X)^{-1} X^\mathrm{T} Y \hat{W} + (X^\mathrm{T} X)^{-1} \hat{W}^\mathrm{T} Y^\mathrm{T} Y \hat{W} \right) \right| \\ &\overset{\eqref{eq:iglms-mle}}{=} - \frac{n}{2} \ln \left| I_p - 2 \hat{B} \hat{W} + (X^\mathrm{T} X)^{-1} X^\mathrm{T} Y (Y^\mathrm{T} Y)^{-1} Y^\mathrm{T} Y (Y^\mathrm{T} Y)^{-1} Y^\mathrm{T} X \right| \\ &= - \frac{n}{2} \ln \left| I_p - 2 \hat{B} \hat{W} + (X^\mathrm{T} X)^{-1} X^\mathrm{T} Y (Y^\mathrm{T} Y)^{-1} Y^\mathrm{T} X \right| \\ &= - \frac{n}{2} \ln \left| I_p - 2 \hat{B} \hat{W} + \hat{B} \hat{W} \right| \\ &= - \frac{n}{2} \ln \left| I_p - \hat{B} \hat{W} \right| \; . \end{split}\]Sylvester’s determinant theorem (also known as the “Weinstein–Aronszajn identity”) states that, for two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times m}$, the following identity holds:
\[\label{eq:sdt} \left| I_m + AB \right| = \left| I_n + BA \right| \; .\]Since $\hat{B} \in \mathbb{R}^{p \times v}$ and $(-\hat{W}) \in \mathbb{R}^{v \times p}$, it follows that
\[\label{eq:sdt-BW} \left| I_p - \hat{B} \hat{W} \right| = \left| I_v - \hat{W} \hat{B} \right|\]and thus, we finally have:
\[\label{eq:iglm-llreq-qed} \ln \Lambda_Y = - \frac{n}{2} \ln \left| I_v - \hat{W} \hat{B} \right| = - \frac{n}{2} \ln \left| I_p - \hat{B} \hat{W} \right| = \ln \Lambda_X \; .\]- Friston K, Chu C, Mourão-Miranda J, Hulme O, Rees G, Penny W, Ashburner J (2008): "Bayesian decoding of brain images"; in: NeuroImage, vol. 39, pp. 181-205, p. 183; URL: https://www.sciencedirect.com/science/article/abs/pii/S1053811907007203; DOI: 10.1016/j.neuroimage.2007.08.013.
- Wikipedia (2024): "Weinstein–Aronszajn identity"; in: Wikipedia, the free encyclopedia, retrieved on 2024-06-28; URL: https://en.wikipedia.org/wiki/Weinstein%E2%80%93Aronszajn_identity.
Metadata: ID: P459 | shortcut: iglm-llrs | author: JoramSoch | date: 2024-06-28, 14:38.