Proof: Median of the gamma distribution
Index:
The Book of Statistical Proofs ▷
Probability Distributions ▷
Univariate continuous distributions ▷
Gamma distribution ▷
Median
Metadata: ID: P518 | shortcut: gam-med | author: JoramSoch | date: 2025-10-24, 13:32.
Theorem: Let $X$ be a random variable following a gamma distribution:
\[\label{eq:gam} X \sim \mathrm{Gam}(a, b) \; .\]Then, the median of $X$ is
\[\label{eq:gam-med} \mathrm{median}(X) = \frac{1}{b} \gamma_a^{-1}\left( \frac{\Gamma(a)}{2} \right)\]where $\Gamma(x)$ is the gamma function and $\gamma_s^{-1}(y)$ is the inverse function of the lower incomplete gamma function $\gamma(s,x)$ in which the first argument is $s$.
Proof: The median is the value at which the cumulative distribution function is $1/2$:
\[\label{eq:median} F_X(\mathrm{median}(X)) = \frac{1}{2} \; .\]The cumulative distribution function of the gamma distribution is
\[\label{eq:gam-cdf} F_X(x) = \frac{\gamma(a,bx)}{\Gamma(a)}\]where the lower incomplete gamma function $\gamma(s,x)$ is given by
\[\label{eq:low-inc-gam-fct} \gamma(s,x) = \int_0^x t^{s-1} \exp(-t) \, \mathrm{d}t \; .\]Thus, the inverse CDF, i.e. the quantile function, is
\[\label{eq:gam-cdf-inv} x = \frac{1}{b} \gamma_a^{-1}(p \Gamma(a))\]where $\gamma_a^{-1}(y)$ is the inverse function of $\gamma(a,x)$. Setting $p = 1/2$, we obtain:
\[\label{eq:gam-med-qed} \mathrm{median}(X) = \frac{1}{b} \gamma_a^{-1}\left( \frac{\Gamma(a)}{2} \right) \; .\]∎
Sources: - Wikipedia (2025): "Gamma distribution"; in: Wikipedia, the free encyclopedia, retrieved on 2025-10-24; URL: https://en.wikipedia.org/wiki/Gamma_distribution#Median_approximations_and_bounds.
Metadata: ID: P518 | shortcut: gam-med | author: JoramSoch | date: 2025-10-24, 13:32.